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ABSTRACT

The current Air Force Nondestructive Pavement Testing (NDPT) method

requires a rational method to evaluate pavement layer modulus values.

A reasonable step toward the development of such a method is computer

analyses of elastic layered systems subjected to dynamic loading.

This research adopts the Method of Direct Analysis which uses the impulse-

momentum laws and constitutive relations but bypasses the explicit use

of differential equations.

As a result of the research, two computer programs were developed,

one for infinite beams and the other for infinite plates both on elastic

foundations. To demonstrate the effectiveness of the developed computer

programs, response analyses were made for sustained, pulse and sinusoidal

loadings. The results for sustained loading on an infinite beam agreed

very well with an available exact solution. It was concluded that the

Mechod of Direct Analysis is an effective tool for dynamic response

analysis of elastic layered systems.
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NOMENCLATURE

A, - Cross-sectional area which contributes to dynamic inertia.

A = Cross-sectional area which contributes resistance to shearing.s

C - Plate velocity = {E/[v(-v2)I}p

C1 - Dilatational wave velocity in a beam - [EIb/pli]

C2 -Shear wave velocity in a beam = [AsG/PA i]

C1 - Shear wave velocity in a plate [G/p];

D - Flexural rigidity of plate = Eh3 /[12(l-v 2)]

E - Modulus of elasticity

G - Modulus of rigidity - E/[2(1+v)]

h - Plate thickness

Ib = Moment of inertia which contributes resistance to bending

I, W Moment of inertia which contributes resistance to dynamic inertia

j = Superscript referring to quantities of the jth cell

k2 = Shear correction factor for plate

M - Internal bending moment

Mr = Radial bending moment per unit length

Me W Tangential bending moment per unit length

Qr = Transverse shear force per unit length

q - Intensity of distributed external load on beam

r - Radial distance along plate

. .. . _ . - .. -. _ , = , .. N O W



t - Time

V - Vertical shear force on a cross-section of the beam

v = Velocity of deflection in a beam or plate, yt or w , respectively

w = Transverse displacement of the midplane of plate

Y= Coordinate along length of beam

y = Deflection of beam

= Total slope of the deflection curve of the beamy

C = Angular strain of an element of the beam

c - Total slope of the deflection curve of the plate
w

Ea Angular strain of an element of the plate

6 Tangential direction

v Poisson's ratio

p Density of the material of beam or plate

Rotation of the cross-section of the plate about the tangential axis

Slope of the deflection curve of a beam when shearing force is neglected

- Angular velocity of rotation of an element of the beam or plate,

ot'°r *t, respectively
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1. INTRODUCTION

1.1 Background Information

The current Air Force Nondestructive Pavement Testing (NDPT) method

contains two main components--data collection equipment and analytical

method [1]. The data collection equipment is used primarily for evalua-

tion of in-situ elastic modulus of each pavement constituent material.

The elastic modulus values are then used as input data for the analytical

method which determines the structural capacity of existing airfield

pavements.

The data collection equipment consists of an impulse loader with

the necessary instrumentation and a desk-top computer for preliminary

data analysis and evaluation. The pavement response to the impulse

loading is measured by using accelerometers; the acceleration-time data

are analyzed by using the Discrete Fourier Transform (DFT) technique [2]

to obtain the phase angle versus frequency relationship which is then

used to develop the dispersion curve. From the dispersion curve, the

shear wave velocity propagating through the pavement is obtained and

the shear modulus of each pavement constituent material is computed.

Although the computation of elastic modulus is simple, the interprcta-

tion of dispersion curves for modulus calculation is not easy and

straightforward [3,4]. For this reason, the current NDPT method is

without an adequate method for computation of layer modulus values

[5].
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Pavement response to dynamic loading is a complex problem due to

the presence of layers of different materials and also the nature of

the constituent materials. The presence of layers causes reflection

and diffraction of waves. Under dynamic loading, the pavement materials

such as bituminous concrete and soil may produce real and imaginary

modulus components which vary with frequency of vibration [6]. Because

of these factors, it is very difficult to find a solution especially

for high order modes of response [7]. As a consequence, no straightforward

procedure is presently available for determination of realistic modulus

values from dynamic loading test results [1].

However, there is the so-called method of Direct Analysis which

bypasses the explicit use of differential equations and may avoid some

of the difficulties just mentioned. Because this method has been

successfully applied to certain beam and plate problems [8,9], this

research is undertaken to investigate the feasibility of using this

technique to analyze the response of elastic layered system to dynamic

loading. While the ultimate goal of the research is to develop a

computer program for elastic layered system, the immediate objective of

this study is specified below.

1.2 Research Objective

The ultimate goal of the research was to develop a computer

program for analysis of the response of elastic layered system to

dynamic loading. As a first step striving toward the goal, this

... ...... ,. .•
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research was undertaken to test the available theory and to develop the

modifications necessary for direct application of the Method of Direct

Analysis to problems of infinite beams and plates on elastic foundation.

I
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2. INFINITE BEAM ON ELASTIC FOUNDATION

2.1 The Physical Laws

The physical laws used in the development of computer programs

include the impulse-momentum laws and the constitutive relations. The

beam is divided lengthwise into elements of equal length. For each

element, the equations of motion and constitutive relations are derived

for two modes of motion -- rotation and translation. The basic assumptions

required in the derivation of the physical laws include that the material

is elastic, homogeneous and isotropic, that the deformation of the beam

is due to both flexural motion and shear deflection of the cross-section,

and that the elastic foundation behaves as Winkler foundation. These

basic assumptions may be found elsewhere [101.

2.1.1 Equations of Motion

The equations of motion are obtained by applying the impulse-momentum

laws directly to an element of the beam. Figure 1 shows the free-body

diagram of a typical Jth element. For this element, the rates of change

in both rotation and translation are given below:

Rotation of the Jth element -

d 1 [1/2 (V + vj +l) + (MJ -MJ+l) (1)
dt PI idx

imd
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M J(Vi jVk CELL

dx

Figure 1. Free-Body Diagram of jth Element

Figure 2. Deformation of jth Element

"In.
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Translation of the Jth element -

dv . 1 (V j - v + qdx - R) (2)
dt QAidxj

The foundation reaction, R, shown in Eq. (2) is a function of

foundation deformation which, in esdence, is the deflection of the beam.

Two different foundation supports are considered in the computer program,

i.e., linear and nonlinear supports. For the linear support, the founda-

tion reaction is directly proportional to the deflection, viz

Rj = -kyj (3)

For the nonlinear support, the following hyperbolic function is used:

Rj I -ky/(l + nyj) (4)

where k is the spring constant having a unit of psi, yj is the mean

deflection of the jth element and n is a constant with a unit of in
-I .

The above hyperbolic relationship between load and deformation is often

used for describing the nonlinear behavior of soils [11,12].

2.1.2 Constitutive Equations

The constitutive equations are obtained from the consideration of

the deformation of a typical beam element. As shown in Figure 2,

the jth element undergoes flexural as well as shear deformation. Thus
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two equations can be obtained, one for shear force and the other for

the bending moment. According to Timoshenko beam theory [10], the shear

force is proportional to the shear angle, namely

V AsG s -Gp} (5)

where

= (yJ+l y J)/dx (6)

For the internal bending moment, the simpler Euler-Bernoulli theory provides

the following relationship:

M f -EIb { } (7)

where

S(J+l _ iJ)/dx (8)

It has been shown [13[ that any input to the beam which causes it to

undergo a flexural mode of motion immediately produces two different

waves -- dilation and shear waves. The dilation wave which is caused

by discontinuities in w and M, as well as discontinuities in their

higher derivation propagates at a velocity C, which is equal to

c = EIb (9)PIi
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The shear wave is related with discontinuities in v and V, as well as

discontinuities in their higher derivatives. The shear wave velocity

may be shown to be (13]

rGA III
C2 = [s] (10)

2.1.3 Boundary Conditions

The problem under investigation is a beam on elastic foundation which

has infinite length and is subjected to a vertical dynamic load. The

dynamic load is distributed over a small area which can be treated as

a concentrated load. In the analysis, the beam is split into two at the

loading point so that each semi-infinity beam carries a shear force

which is equal to one-half of the applied load. Meanwhile, for the

continuity requirement, the slope of the deformed beam at the loading

point is maintained at a value of zero.

Furthermore, the shape of the deflected beam dictates that deflections

beyond distance L (measured from the load) become very small. According

to Timoshenko [14], the distance L for static loading is approximately

equal to 5.5/8, where a = 4 .Vi7ZEI, k - spring constant of the elastic

foundation, E = Young's modulus, and I - moment of inertia of the cross

section of the beam with respect to z axis. On this basis, the semi-

infinite beam can be approximated by a beam with a finite length L. Thus,

for the problem under consideration, the shear input and boundary con-

ditions are

T-.n
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= 0 (12)

Y] xL 0 (13)

In the analysis, it is convenient to express the boundary conditions in

terms of the angular and linear velocities, respectively, as follows.

X -. ] (14)

vxL x t] xL 0 (15)

where subscript t denotes time.

The preceding equations are a complete statement of the problems of

the flexural traveling stress waves in an infinite beam on elastic founda-

tions. Of these equations, the rotational impulse-momentum law, Eq. (1),

indicates that the angular velocity of rotation, w, is a function of both

the moment and the shear. Since the moment is associated with the dilation

wave and the shear with the shear wave, Eq. (1) exhibits an interaction

of two waves and by definition the angular velocity is a coupled quantity.

Moreover, Eq. (5) indicates that the shear force is also a coupled

quantity since it is a function of both the linear displacement gradient

.. ... . ..- . " . .; , . . .. .. .. .. .. ... . .
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and the angle of rotation. Because of the interaction or coupling between

the two waves, variables which are associated with both wave speeds must

be given special treatment. Thus, the solution requires a special

technique of coupling which is presented in the following.

2.2 The Technique of Coupling

In the Method of Direct Analysis, the beam is divided into finite

number of elements or cells as mentioned earlier. It is convenient to

determine the cell length based on the "characteristic assumption,"

namely, dx - c dt [8,15], where c - wave velocity and dt - time increment.

Since two distinct wave speeds are present, the cell length dx = c dt

cannot be satisfied for both speeds simultaneously. Thus, a technique

is needed to determine whether the wave under consideration has passed

across the cell. If the wave has crossed the cell, the computation

of stresses, strains and velocities for this cell will be triggered.

Otherwise, further computation is skipped and the current dynamic

variables are held over until the time has sufficiently advanced, and

the cycle is repeated.

There are two procedures available for carrying out the above

technique, namely, the "wave index" and "clock" methods '16]. These two

procedures are completely analogous but the "clock" method is more

amenable to a problem in which two waves are present. For this reason,

the "clock" method is adopted in this analysis and is discussed below.
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In the "clock" method, two time "clocks" are established; one for

dilatation wave and the other for shear wave. Each "clock" signals the

instant when the wave propagation procedure for that particular wave

is undergone. The rate of advancement of the two clocks are defined

as follows:

dtD dx (16)
C D

for dilatation wave clock, and

dtR dx (17)
R

for shear wave clock,

in which CD and CS are the dilatation and shear wave velocities, respectively.

Since CD is greater than CS, the dilatation wave front initially will

reach the end of a cell before the corresponding shear wave front. When

this has happened, the dilatation time clock will advance dtD, viz,

Y' - tD + dtD , and the quantities associated with the dilatation wave

will be adjusted. Then, two possibilities follow. One possibility

is that the dilatation clock has advanced another dtD before the shear

clock. When this condition occurs, the quantities associated with the

dilation wave front again will be adjusted. The other possibility is

that the shear wave clock advances dtR before the next advancement of

the dilatation clock. When this happens, the quantities associated with

v.-
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the shear wave front will be adjusted. A flow diagram summarizing this

propagation procedure is given in Figure 3. Note that in this analysis,

the actual time, t, is chosen to coincide with tD' A more detailed

discussion on wave propagation procedures is available elsewhere [16].

The preceding wave propagation technique is used as the basis for

the arrangement of the various physical laws presented earlier. It

should be emphasized that the position of the important steps must be

carefully organized in order to maintain a stable solution. In general,

the arrangement requires that the cause and effect are properly sequenced

and the statement of boundary conditions should follow immediately after

the calculation of the dynamic quantity for which they are prescribed.

2.3 The Technique of Considering Damping

The effect of damping is taken into consideration with the use of

exponential damping function. In the problem of flexural traveling waves

in beams and plates there are two velocities -- linear and angular velocities

which must be damped in order to attain an equilibrium state. According

to exponential damping function which is often used, these two velocities

can be expressed as follows:

W = e-t/T (18a)

0v -V0 e-t/T2 (18b)
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t Is tpt t + gdt) ? E () td

NO YES

YES s t D d t R t )? (k k 1d

Ds( D dtD >( d R R 7 RYSSO

Figure 3. Flow Diagram f or "Clock" Method of Wave Propagation
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where 0 and v are the initial linear and angular velocities, respectively,

and -1 and T, are arbitrary constants.

Upon differentiation, one obtains the magnitude of damping occurring

in time dt or the change of angular and linear velocities due to damping

as follows:

dw = dt (19a)TiU

dv = - dt (19b)
T2

These damping relations Eq. (19a and b) are incorporated into the previously

developed impulse-momentum laws as shown in Figure 4. It should be noted

that because of the desire to eliminate computation fluctuations, it

has been found necessary to use half of the initial and half of the final

velocity (linear or angular) to obtain the total contribution of motion

damping occurring in time dt.

From Eq. (19) it is seen that a completely undamped solution can

be obtained by letting T1 and T 2 equal to infinity. To obtain a transient

and static solutions, dt/T i must be restricted to lie in the range between

zero and one. This general principle of synthesizing static and dynamic

solutions constitutes a unique feature of the Method of Direct Analysis.

Note that in mathematical approaches, static and dynamic solutions are

governed by elliptic and hyperbolic equations, respectively. Separate

analyses are generally required for each type of problem.
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Dilatation Wave (angular velocity)

(wi) wi - Wi(dt/2T1) 3
ANGULAR IMPULSE-MOMENTUM LAW

dw =..

(,)"' (J)" - (w'J)"(dt/2tl) I

Shear Wave (linear velocity)

(vj) ' = - (dtR/2 2 )

LINEAR 1MPULSE-MOMENTUM LAW

dv .

(v (vj) + dv

) (yi)" - (vJ)"(dtR/2t 2 )

r!iurc 4. Flcw riavram fer Damvine Consideration

l
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Using these properly organized physical laws, boundary conditions

and damping equations, the computer program developed by Koenig [16]

for cantilever beams has been modified and extended to suit the condition

of infinite beams on elastic foundations. The computer program which is

developed for IBM 370/3081 is capable of providing the response of beams

to both transient and steady-state loadings. The transient loading may

be a triangular, rectangular or haver sine pulse; and the steady-state

loading may include harmonic or sustained loadings. Furthermore, both

linear and non-linear elastic foundation can be considered.

The computed response can be presented in both numerical and graphical

forms. The plotting of output is accomplished by incorporating an

available program PLOTIT [17] into the computer program. The listing

of the complete computer program is included in Appendix A.

C Orr-
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3. DYNAMIC RESPONSE OF BEAM ON ELASTIC FOUNDATION

The developed computer program was used to analyze the response of

infinite beam on elastic foundation for several types of dynamic loading

to demonstrate its effectiveness in the analysis of stress wave propa-

gation. The dynamic loadings analyzed included step sustained loading,

step pulse loading and slnusoidal loading. Results of the analyses

are presented and discussed below.

3.1 Response to Step Sustained Loading

In this analysis, the infinite beam is made of portland cement

concrete having a cross section 1 in. wide and 4 in. high with a

modulus of elasticity of 3 x 106 psi. The beam is subjected to a con-

centrated vertical load of 200 pounds with a sufficiently long duration

so that it can be considered as a sustained load. The beam is supported

by springs having two different stiffnesses, one lower and the other

higher than the stiffness of the beam. To demonstrate the ability

of the computer program for handling different damping conditions,

both under and over-damped conditions are analyzed for one spring stiffness.

3.1.1 Over-Damped System

In the preceding chapter, it has been pointed out that for over-

damped condition, the constant T i in Equation (19) must be small.

It should be noted, however, that too small values of Ti may over-
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depress the response and as a result considerably longer time is needed

to reach a steady-state condition. The time required to reach a steady-

state response depends greatly on the stiffness of the beam-foundation

system and time increment (dt) used in the analysis. Thus, the values

of r. must be carefully chosen in order to keep the time to steady-state,1

and therefore the computation cost, to a minimum.

In the analysis, two spring stiffnesses, I x 104 and 4 x 106 psi,

are used. For the system with I x 104 psi spring coastant, the length

of the beam analyzed is 48 in., cell length is 1 in. and the time

constant ri is chosen at 30 usec. Results of the analysis are presented

in two general forms: response versus time and response versus distance.

Figures 5, 6 and 7 show the deflections, moments and shears at three

locations versus time, respectively. It is seen that the responses

almost reach a maximum at the end of the curves. Also, time lags exist

between the responses at the loading point and that away from it indicating

the phenomenon of stress wave propagation away from the loading point.

The computed responses shown at the end of the curves are plotted

against distance in Figures 8 (deflection), 9 (slope), 10 (moment)

and 11 (shear). Also included in these figures are an available exact

solution for static loading which is given by Timoshenko and is described

below [14].

Deflection y - 2k-e (cos Bx + sin Bx) (20a)

2k' , . i
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Slope dy = PB2  -Bx
Slope - - -e sin Sx (201o)

dx k

Moment M = - - ex (sin 5x - cos Bx) (20c)
4B

P -Bx
Shear V = - P e cos Bx (20d)

where notations P, k and 8 have been defined in the preceding chapter.

It is obvious that the exact solution provides continuous curves.

For clarity, however, only some values are selected arbitrarily for

comparison. Although there is some discrepancy between the two sets of

data, the agreement generally speaking is very good. Primary causes

for the difference may include the following: (1) At the time of

comparison, the steady.-state response has not yet established as revealed

by Figures 5, 6 and 7 in which the response has not quite reached the

constant value, (2) The cell length of 1 in. is too large. Of the four

figures under consideration, Figure 9 provides a better view of the

effect of coarse cell; in this figure, 1-in. line segments are clearly

shown. It is believed that with the use of smaller cell length together

with larger time of comparison, the results of Direct Analysis should

match with the exact solution very well. The excellent agreement between

the two sets of results indicates that the developed computer program

is capable of providing accurate solution for infinite beam- on elastic

foundations.

Another system analyzed has a spring constant of 4 x 106 psi.

For this condition, the length of the beam used is 10 in., cell length

'gejim
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is 0.05 in., and time constant Ti is chosen at 6.6 jsec. Results of

the analysis are summarized in Figures 12, 13 and 14 which show the

variation of deflection, moment and shear with time, respectively. As

expected, the shape of the curves resembles that of the previous system.

Primary reasons for analyzing a system with such a high spring constant

are two-fold: (1) to demonstrate that the computer program can be used

to analyze the dynamic response of an electric beam supported by a

foundation which is stiffer than the beam, and (2) to provide response

data of over-damped condition for comparison with the data of under-

damped condition which is presented later.

3.1.2 Under-Damped System

In order to obtain at least one full cycle of fluctuation and at

the same time to keep the computation cost to a minimum, a very high

value of spring constant (4 x 106 psi) was selected for analysis.

This value of spring constant was also used in the preceding over-damped

condition so that a comparison of response data between over-damped and

under-damped systems can be made. As before, the length of the beam

used in the analysis is 10 in., and the cell length is 0.05 in. but

time constant is selected at 30 msec. Figures 15, 16 and 17 present

respectively, the variations of deflection, moment and shear with time

for three different locations. Although only a little more than one

cycle of data are is obtained, a trend that the response data fluctuate

around the maximum value of the over-damped solution (Figures 12 through
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14) is revealed. Also, because of the damping, the peak response value

decreases with increasing cycle of fluctuation.

3.2 Response to Step Pulse Loading

The step pulse loading analyzed is a 200 lb. vertical concentrated

load having a load duration of 3 msec. The infinite beam is of the same

material and the same dimension as that used in the previous condition,

namely, portland cement concrete beam, 1 in. wide by 4 in. high with

3 x 106 psi modulus. However, the support is a nonlinear elastic

foundation which behaves according to the hyperbolic function described

by Eq. (4). In Eq. (4), the values of constants k and n are chosen to

be 10,000 psi and 100 in. I , respectively. With the use of 1 x 104 psi

for k value and a load of 200 lb., this system is different from the

previous one only in load duration and nonlinear spring support. To

obtain an over-damped solution, the same time constant T = 30 Usec as

used before is adopted. Meanwhile, the length of the beam analyzed is

also 48 in. and the cell length is 1 in.

The deflection, moment and shear versus time relationships obtained

from the computer analysis are presented in Figures 18, 19 and 20,

respectively. It is seen that during the loading period the response

increases with time following the same path as that of the step sustained

loading shown in Figures 5, 6 and 7. After the load is removed, i.e.,

after 3 msec, the response gradually diminishes with increasing time.

A comparison between Figures 4 through 7 and Figures 18 through 20
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indicates no apparent difference in the response within the loading

period between the linear and nonlinear systems. This is probably because

the magnitude of deflection under 200 lb. is not large enough to cause

significant difference in foundation reaction.

To show the variation of response with distance, a time of 3.48 msec

is used for plotting. The curves thus obtained are presented in Figures 31

(deflection), 22 (slope), 23 (moment) and 24 (shear). The shapes of

these curves in general are similar to those in Figures 8 through 11

except for the shear curve especially in the region near the loading

point. At x=o, the shear equals 100 lb. in Figure 11 and 0 lb. in Figure 24.

This is due to the fact that the time used for plotting (3.48 msec) exceeds

the duration of the pulse loading (3 msec). At 3.48 msec, the loading

has already vanished and therefore the shear at x=o equals zero as indicated

in Figure 20.

3.3 Response to Sinusoidal Loading

The same portland cement concrete beam, 1 in. wide by 4 in. high,

supported by a linear elastic foundation with k = I x 104 psi is subjected

to a sinusoidal loading which has an intensity of 200 lb. with a frequency

of excitation of 3600 t. The duration of the sinusoidal loading is 3 sec.

which is large enough to provide a steady-state response. As before,

the length of the beam analyzed is 48 in. and the time constant is

selected at 30 usec to effect over-damping. However, to reduce the cost



39

C-,3
C= t

,j,

-Z

_ 0

-4

4

0i

(3 T L (3*9 1 *9 *0

S3HO~~~~r 1-** r oi3410A3



40

LN
0w
0

00

u ai

x -4

~Li 0
o ~ z

E.. - Cu
-4'cc

P-.-4

.

E- 0

0

C4

"4
)r- 36 * Nr JOISVIV3



41

0

-~V-

C=L>
o 4 z

z C:

EZ
Z E4

4

-4

0

0

0 L 0 9 a~ Oz - aO*- 0a010-
'-4

'Nr-s1'wc '06 NrI NMbN~ fV38



42

.

00

000
o ~.dkA

N,

C, E-.Coo

L..)

in~

E-0E-*
C30

C:;1

EB1*0 67L NI dV3HS flV38



43

of computation a cell length of 2 in. instead of 1 in. is used in this

analysis. The computed deflection, moment and shear are shown respectively

in Figures 25, 26 and 27 as a function of time. As would be expected,

delayed responses at points away from the load are shown.

The responses obtained for three different times, 8.7, 17.4 and

26.1 usec are plotted against distance in Figures 28 through 31. The

time used for plotting is chosen arbitrarily. These figures demonstrate

again the phenomenon of wave propagation.
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4. INFINITE PLATE ON ELASTIC FOUNDATION

4.1 Development of Computer Program

The problem of infinite plate on elastic foundation with vertical

loading is axisymmetrical. For this reason, in the development of the

computer program, the plate is divided into cells or elements having

the shape of concentric rings. As for the beam, the equations of motion

and constitutive equations of each cell are derived for both rotation

and translation motions. Also, as before, the elastic foundation is

assumed to behave as Winker medium.

In the development of physical laws, we consider the free-body

diagram of a typical Jth element shown in Figure 32 and apply the

impulse-momentum laws. The equations of motion thus obtained are as

follows:

Rotation of the jth element

d J+l (rJ+dr) - Mrj - M J dr 1r[ Qj dr + (rJ+dr) QJ+ldr] (21)
d_ r e 2 r r
dt (ph/12)(r dr + (dr)2 /2]

Translation of the jth element

(j + dr) (r R

dv ri +dr) J+ l - r Qr - (r + dr/2) RJ (22)

dt ph [ri dr + (dr)2 /2]

where the foundation reaction Ri has been defined in Equations (3) and (4).
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The constitutive equations are obtained in a manner similar to

those of the beam, viz

Mr - D{fe + }(23)

me = + v(24)

Qr = K 22 Gh { + w }  (25)

where

D Eh 3(6
Dfi12 (1-v')  (6

i =  (J+l _ J)/dr (27)

ew (wJ+i wJ) Idr (28)

K 2 2 0.76 + 0.3 v (29)

As for the beam, the dilatation wave velocity is the velocity of

propagation of discontinuities in the moments as well as the angular

velocity and/or their higher derivatives, and the shear wave velocity

is the velocity of propagation of discontinuities in the shear and linear

velocity and/or their higher derivatives. These two velocities can be

expressed as follows:

Dilatation wave velocity or plate velocity

P (_v2)] (30)



54

Shear wave velocity

K2 C2
1  K2 [ G (31)

The boundary conditions for the infinite plate on elastic foundation

may be derived from the shape of the deflected plate. Under a vertical

load uniformly distributed over a small area, the deformed plate resembles

a bowl which is axisymmetric about the loading axis so that at the loading

center the slope equals zero. Furthermore, according to Alpan and

Leshchinsky [181, the plate deflections beyond a distance of R measured

from the loading center are very small and can be neglected for practical

purposes. The distance R is a function of the radius of the loaded area

and the stiffness of the system and can be estimated from the following

equation:

R f 9f(r0 /Z) (32)

where

r - radius of loaded area0

- characteristic length - 4-

Other notations have been dcfined earlier. Also, available solutions [19,20]

indicate that the deflected shape of the plate is oscillatory and has

its first two zeros at 3.92 Z and 8.36 Z. In this analysis, the larger

value of 8.36 Z and that computed from Eq. (32) is used to determine the

radius of the plate.
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With the use of this distance, the infinite plate may be approximated

by a circular plate having a radius equal to R and the loading acting

at the center of the plate. Thus, for the problem under consideration,

the shear input and boundary conditions are

Shear V] 2 r (34)x=o 2Trr
0

Slope it]x=o = ] = 0 (35)

Deflection yt'x-L = V]x=L = 0 (36)

where r is the radius of the loaded area, w and v are angular and

linear velocities, respectively, and t denotes time.

Using the preceding physical laws, constitutive equations, boundary

conditions and the damping equations described in an earlier chapter, the

computer program developed by Koenig [16] for circular plates with clamped

edges are modified and extended to suit the condition of infinite plates

on elastic foundation. The final computer program is included in Appendix

B.

4.2 Response to Step Sustained Loading

The developed computer program is used to analyze the response of

a 4-in. thick infinite plate on elastic foundation to a step pulse loading,

- AII
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the loading has a magnitude of 100 lb. and is uniformly distributed

over a circular area 0.2 in. in radius. The duration of the loading is

4 sec. which is long enough to be considered as a sustained loading. The

plate has a Young's modulus of 3 x 106 psi and a Poisson's ratio of 0.20.

The supporting foundation is a weightless linear spring having a spring

constant of I x 104 pci. In the analysis, the 4-in. thick infinite plate

is approximated by a circular plate with a radius of 50 in. A cell length

of 0.2 in. is used and a time constant of 30 usec is selected in order

to obtain an over-damped response.

The analyzed deflection, moment and shear are plotted against time

in Figures 33, 34 and 35, respectively. As would be expected, the response

at a point increases with increasing time. In general, the shape of the

curves resembles that of the curves for beam on elastic foundation.

4.3 Response to Sinusoidal Loading

An analysis is also made for the response of the same plate to a

sinusoidal vertical loading. The intensity of the loading is also 100 lb.,

the frequency of excitation is 36000 t. Other conditions including plate

modulus, Poisson's ratio, spring constant, cell length and time constant

are the same as that used for the beam analyzed previously. Results

of the analysis are presented in Figures 36 (plate deflection), 37 (moment)

and 38 (shear).
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5. SUMMARY AND CONCLUSIONS

As a step toward the development of a computer program for analyzing

the response of elastic layered systems to dynamic loading, the Method

of Direct Analysis was used to analyze the dynamic response of infinite

beams and plates on elastic foundation. The Method of Direct Analysis

uses only the impulse-momentum laws and constitutive relations but by-

passes the explicit use of differential equations. As a result of the

research, two computer programs were developed, one for infinite beams

and the other for infinite plates both on elastic foundations. The

computer programs are capable of handling various types of dynamic

loading such as sinusoidal, impulse, and sustained loadings. Also,

both linear and nonlinear spring supports can be considered.

To demonstrate the effectiveness of the developed computer programs,

response analyses were made for sustained, pulse and sinusoidal loadings.

For the sustained loading on an infinite beam, both over-damped and

under-damped conditions were analyzed. Also, under the pulse loading,

the beam was analyzed for nonlinear spring support. The results for

sustained loading on an infinite beam were compared with an available

exact solution. An excellent agreement with the exact solution was

obtained.

The results of the study indicate that the Method of Direct Analysis

is an effective tool for dynamic response analysis. It appears feasible

that a computer program for response analysis of elastic layered systems

_ _ _ _ _ _ _ _ _ _ _ .'V,
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to dynamic loading can be developed based on the principle of the Method

of Direct Analysis.

" ' -.. ... ','-' . ... .. ... "i ' . . . -_ .
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6. RECOMMENDATIONS FOR FURTHER RESEARCH

The computer programs developed from this research are based on

the assumption that the elastic foundation is a weightless Winkler medium.

Therefore, further research is needed to extend and modify the computer

programs to suit elastic layered systems. To achieve the ultimate goal

of developing a program for nondestructive pavement testing (NDPT), the

following steps of research are recommended:

1. The dynamic response of a composite plate consisting of two

different materials and supported by a Winkler medium should

be studied. Results of the analytical investigation should

be validated experimentally.

2. Results of the study on composite plate should be extended

to the condition of an infinite plate supported by an isotropic

elastic half-space. Field testing should be conducted to

validate the computer program thus developed.

3. Extend the computer program developed above to the condition

of a composite plate on an isotropic elastic half-space. This

phase of research should also be accompanied by full-scale

field testing.
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/1 EXEC PGM-IEFBR14
//D DD DSN-MEN.PlI850.A3B.PLOT,DISP-(OLD,DFLETE),
II V OLREF-MEN.P11950.A3B. LIB
//D DD DSN-MEN.PI1850.A3B.PLOT1,DISP,(OLD,DELETE),
/ / VOL-REF-MEN. P11850. A3B. LIB
//D DD DSN-MEN.PI1850.A3B.PLOT2,DISP-,(OLD,DELETE),
// VOL-REF-MEN.PI1850.A3B.LIB
//D DD DSN-MEN.PI1850.A3B.PLOT3,DISP-(OLD,DELETE),
I/ VOL-REF-MEN.P11850.A3B.LIB

//D DD DSNMEN.PI1850.A3B.PLOT4,DISP-(OLD,DELETE),
// VOL',REF"MEN.P1l850.A3B.LIB
//D DD DSN-MEN.PI1850.A3B.PLOT5,DISP',(OLD,DELETE),
// V OL-REF-MEN.P1l850.A3B. LIB
//D DD DSN-MEN.PI1850.A3B.PLOT6,DISP-(OLD,DELETE),
// VOL-REF-MEN.P11850.A3B.LIB
// EXEC FGCLG,PARM-,NOSOURCE °

//SYSIN DD *
REAL YB(900),XB(900)
LOGICAL*l SYMA/../,SYMB/','/,SYMC/ .'/
REAL*4 D(6,600)
INT-EGR*2 A(600) ,B(600) ,C(600)
LOGICAL*I LABEL(40,2)

C INFINITE BEAM ON ELASTIC FOUNDATION

C SHEAR AND FLEXURAL WAVES BASED ON DYNAMIC LAWS
C UNITS IN LB-IN-SEC SYSTEM
C POSITIVE SIGN CONVENTION LISTED AFTER DEFINITION
C
C AIM - ANGULAR IMPULSE DUE TO MOMENT LB-IN-SEC.
C AIN - AREA CONTRIBUTING TO DYNAMIC INERTIA IN**2
C AV - ANGULAR IMPULSE DUE TO SHEAR LB-IN-SEC.
C AS - EFFECTIVE SHEAR CARRYING AREA IN**2
C Cl - DILATATION WAVE VELOCITY IN/SEC.
C C2 - SHEAR WAVE VELOCITY IN/SEC.
C DEN - WEIGHT DENSITY OF BEAM MATERIAL LB/CU IN.
C DT TIME INCREMENT SEC.
C DS - DISTANCE SCALE FACTOR IN.
C DTD - TIME INCREMENT-DILATATIONAL WAVE SEC.
C DTR - TIME INCREMENT-SHEAR WAVE SEC.
C DX - CELL LENGTH IN.
C EM - YOUNG'S MODULUS OF ELASTICITY PSI.
C ESR - FOUNDATION SPRING CONSTANT PSI.
C FMT - PRINT FORMAT FOR X-T DIAGRAMS
C G SHEAR MODULUS OF RIGIDITY PSI.
C IDENT - TITLE OF RUN
C IM - NO. OF CELLS INTO WHICH BEAM IS DIVIDED
C INI - MOMENT OF INERTIA WHICH CONTRIBUTES RESISTANCE
C TO BENDING IN**4
C INB - MOMENT OF INERTIA WHICH CONTRIBUTES RESISTANCE
C TO DYNAMIC INERTIA IN**4
C IPP - 0 PLOT THE DATA
C IPP - 1 PRINT THE DATA
C IPP - 2 PRINT AND PLOT THE DATA
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C IPR NO. OF COLUMNS OF PRINTOUT IN A PAGE
C KKM TIME CONTROL INDEX FOR THE FIRST RESPONSE-DIST. CURVE
C KKMI - TIME CONTROL INDEX FOR THE SECOND RESPONSE-DIST. CURVE
C KKM2 TIME CONTROL INDEX FOR THE THIRD RESPONSE-DIST. CURVE
C KM TIME CONTROL INDEX FOR TERMINATING COMPUTATION
C KS - SHEAR CORRECTION FACTOR
C L -LENGTH OF BEAM IN.
C LIQ - LINEAR IMPULSE DUE TO FOUNDATION REACTION LB-SEC.
C LIQQ - LINEAR IMPULSE DUE TO DISTRIBUTED LOAD LB-SEC.
C LIV - LINEAR IMPULSE DUE TO SHEAR LB-SEC.
C MM - SCALED VALUE OF MOMENT
C MOM - INTERNAL BENDING MOMENT - CW ON LEFT IN-LB.
C MS MOMENT SCALE FACTOR IN-LB.
C MO GIVEN APPLIED MOMENT AT X-O IN-LB.
C NAME - NAME OF MATERIAL OF BODY
C NU - POISSON'S RATIO
C OMEGA - VELOCITY OF ROTATION OF CROSS-SECTION,
C D(PSI)/DT - CLOCKWISE RAD/SEC.
C OMOS = ANGULAR VELOCITY SCALE FACTOR RAD/SEC.
C OMOM - SCALED VALUE OF ANGULAR VELOCITY
C PSI = ROTATION OF CROSS-SECTION ABOUT THE NEUTRAL
C AXIS - CW ON LEFT RAD.
C PSIPS - SCALED VALUE OF ROTATION
C PSIS - ROTATION SCALE FACTOR RAD.
C Q - INTENSITY OF UNIFORMLY DISTRIBUTED EXTERNAL
C LOADING - DOWNWARD LB/IN.
C QQO - INPUT VALUE OF DISTRIBUTED LOAD LB/IN.
C RHO - MASS DENSITY OF BEAM MATERIAL LB-SEC**2/IN**
C T -TIME SEC.
C TAUI - DAMPING TIME CONSTANT FOR OMEGA SEC.
C TAU2 DAMPING TIME CONSTANT FOR VELOCITY SEC.
C TD - TIME CLOCK WHICH REGULATES DILATATIONAL WAVE SEC.
C TL - THE PREVIOUS TD OR TR SEC.
C TLB - ONE TIME SEGMENT BEFORE TL SEC.
C TR - TIME CLOCK WHICH REGULATES SHEAR WAVE SEC.
C TS - TIME SCALE FACTOR SEC.
C TT - SCALEn VALUE OF TIME
C TI - DURATION OF MOMENT PULSE AT X-O SEC.
C T3 - DURATION OF VELOCITY PULSE AT XO SEC.
C V - VERTICAL SHEAR ON A CROSS-SECTION -UP ON LEFT LB.
C VEL - VELOCITY OF DEFLECTION, D(Y)/DT - DOWNWARD IN/SEC.
C VELS - LINEAR VELOCITY SCALE FACTOR IN/SEC.
C VELVE - SCALED VALUE OF LINEAR VELOCITY
C VS - SHEAR SCALE FACTOR LB.
C VV - SCALED VALUE OF SHEAR
C VO GIVEN APPLIED SHEAR AT X-O LB.
C X - AXIAL COORDINATe ALONG LENGTH OF BEAM MEASURED
C FROM LEFT END IN.

C Y - DEFLECTION - DOWNWARD IN.
C YS - DEFLECTION SCALE FACTOR IN.
C YY - SCALED VALUE OF DEFLECTION
C
C MAIN PROGRAM

DIMENSIONX(400) ,V (400) ,VEL(400) ,Y(400),PSI(400),OMEGA(400) ,VV (400)

- - - ,-~ r--,.*i ... ... - ,
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l,.VELVE(40) ,OMOM(400) ,YY(400) ,PSIPS(40) ,Q(40 0) ,YBI(900) ,YB2(Q00)
REALINB,INI,L,MOM(400O),MO,MS,,MM(400),NUT,KS,MASS,INFERT
LOGICAL*IIDENT(30) ,FMT(80) ,NAME(l0)
C0MMONT,X,G,EM, L,.4OM,V C1,C2, Q,VEL,Y, RHO, DEX,PST,OMEGA,INB,I NT,ATIN

I ,AS,* K'; ,M0,'70,T1,T3,DT,DX,'TS,MS,VS,VFLS,OMGCS,T-,V"y MM,VFVFE,0MOM,Tm
1,KM,IPR,MASS,IMERT,KKM,!SIPS,PSIS,YS,IM,TAU,TAU2,Q0,FSR,B'rA
1 ,KKMI ,KKM2
I READ 801,IDENT,FMT
READ 802,NAMEDEN,FM,L,NU,DX,ATN,KS
IF(DEN) 500,500,3

3 READ 903,MO,VO,Tl ,T3, TS,VS,VELS,YS
READ 804,KM,TPR,TNB,MS,PSIS,OMGS,TAUI ,TAU2
READ 105,ESR,KJC,KK14OcN2,IPP,jS
C-EM/(2.0*(1 .0+N1))
RHOu.DEN/386 .0
AS-KS*AIN
INI-I NB
Cl=(((EM*INB)/(RHO*INI) )**0. 5)
C2-( ((AS*G)/(RHO*AIN))**0. 5)
MASS-RHO*AIN*DX
INERT-RHO*I NE*DX
BETA-(ESR/(4 .0*EM*INB))**0. 25
DT-DX/( Cl)
GAMMA-EM/C G*KS)

C DIVISION OF BEAM INTO ELEMENTS
XCI )mO.O
DO 101 T-1,400
X(TI)=X(I )+DX
IF(ABS(X(TI)-L)-DX/2.0) 10,10,101

10 IMI1

GO TO 11
101 CONTINUE
11 IMO=IM+1

PRINT 900,IDENT
PRINT 901,NAME,DEN,RHO,EM,G,ESR,NU
PRINT 902,L,AS,AIN,INB,INI,TAUI,TAU2
PRINT 903,CI,C2
PRINT 904,MO,V0,TI,T3
PRINT 905,DT,DX,TS,VS,VELS,OMGS,MS,PSIS,YS
PRINT 906,IM,KM,IPR

C PRINTOUT OF CELL BOUNDARY COORDINATES
PRINT 9266
PRINT 907,(T,X(T),T-1,TMO)
DO 909 M-11,13

909 REWIND M
DO 910 M-20,22

910 REWIND M
CALL BEAM

C
C PRINT INSTRUCTIONS

IF(IPP.EQ.O) GO TO 500
LA-1
1M2-I PR

30 DO 912 M-11,13
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912 REW1ND M4
DO 913 M-20,22

913 REWIND M
IF(IM+l-IM2) 24,24,25

24 1M2-IM+l
r X-T DIAGRAM FOR MOMENT

25 PRINT 908
DO 104 K-1,KM
READ (11) TT,MM(l),VV(1),(MM(I),IUI ,IMO)

104 PRINT FMT,TT,M4(l),VV(1),(MM(I) ,I-IA,IM2)
C X-T DIAGRAM FOR SHEAR

PRINT 1909
DO 105 K-l,KM
READ (12) Tr,MM(1) ,VV(l),(VV(I) ,Iul ,IMO)

105 PRINT FMT,TT,MM(1) ,VV (1) ,(VV (I) ,I-IA, 112)
c X-T DIAGRAM FOR LINEAR VELOCITY

PRINT 1910
DO 106 K-l,KM
READ (20) TT,MM(l),VV(l),(VELVE(I),I-l,IMO)

106 PRINT FMT,TT,MM(1) ,VV(l) ,(VELVE(I) ,I'IA,IM2)
C X-T DIAGRAM FOR DEFLECTION

PRINT 911
DO 107 K-l,IGM
READ (21) TT,MM(l),VV(1) ,(YY(I),I-l ,IMO)
PRINT FMT,TT,MM(1),VV(1),(YY(I),I-IA,1M2)

107 CONTINUE
C X-T DIAGRAM FOR ANGU3LAR VELOCITY

PRINT 1912
DO 108 K-1,KM
READ (22) TT,M(l),VV(1),(OMOH(I),I-l ,114)

108 PRINT FMT,TT,NM(l),VV(1),(OMOM(I) ,I=IA,1M2)
C X-T DIAGRAM FOR ANGLE OF ROTATION

PRINT 4913
DO 4108 K1-,KK
READ (13) TT,MM(1),VV(1),(PSIPS(I) ,1-1,IMO)

4108 PRINT FMT,TT,MM(l),VV(l),(PSIPS(T),I-IA,1M2)
IF(IM-1M2) 500,500,37

37 IA-IA+IPR
1 M2-IM2+IPR
GO TO 30
IF(IPP.EQ.l) GO TO 501

800 FORMAT(80A1)
801 FORMAT(80A1/80A1)
802 FORMAT(10A1,FlO.2,ElO.2,3Fl0.2,EIO.2,F10.2)
803 FOR?4AT(BEIO.2)
804 FORMAT(2110,6E10.2)
805 FORMATCE1O.2,4110,FIO.2)
900 FORMAT(lHD,80Al//)
901 FORMAT(26HOMATERIAL - lOA1

I ,24HOWEIGHT DENSITY DEN - ,F8.3,2OH LBS/IN**3
2 ,24HOMASS DENSITY RHO - ,F8.6,2OH LB/SEC**2/IN**4
3 ,24HOYOUNGS MODULUS E - ,E8.2,20H PSI

4 ,24H0M0D. OF RIGIDITY G - ,Eg.2,20H PSI
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5 ,24HOMOD. OF SUB. REAC.ESR - ,EB.2,20H PSI /
6 " ,24HOPOISSONS RATIO NU = ,F9.2,20H /)

902 FOPMAT(24H0LENGTH OF BEAM L = ,F8.3,20H IN /
1 24HOSHEAR AREA AS - ,F8.2,17H IN**2 /
2 24HOINERTIA AREA AIN - ,F.2,17H IN**2 /
3 24HOBEND. MOM. IN. INB ,FS.2,17H IN**4 /
4 24HOINERTIA MOM. IN. INI ,F8.2,17H IN**4 /
5 24H0 TAUI TAUI ,E8.2,17H 1/SEC /
4 24H0 TAU2 TAU2 ,E8.2,17H I/SEC I)

903 FORMAT(24HOMOMENT WAVE Cl ,F8.0,20H IN/SEC /
1 24HOSHEAR WAVE C2 ,F8.0,20H IN/SEC

904 FORMAT(24HOX-O MOMENT PULSE MO = ,F8.2,20H IN-LB /
1 24HOX-O VELOC PULSE VO - ,F8.2,20H LB /
2 24HOX-O MOM. PULSE DUR.Tli ,E8.2,20H SEC /
3 24HOX-O VEL PULSE DUR.T3 = ,E8.2,20H SEC

905 FORMAT(24HOTIME INCREMENT DT - ,E8.2,20H SEC /
I 24HOCELL LENGTH DX - ,F8.5,20H IN /
2 24HOTIME SCALE FACTOR TS - ,E8.2,20H SEC /
3 24HOSHEAR SCALE FACTOR VS- ,E8.2,20H LB /
4 24HOIEL SCALE FACTOR VELS- ,E8.2,20H IN/SEC
5 24HOANG VEL SCALE FAC OMGS- ,E8.2,20H RAD/SEC
6 24HOMOMENT SCALE FACTOR MS- ,E8.2,20H IN-LB
7 24HOANG SCALE FACTOR PSIS- ,E8.2,20H RAD
3 24HODEF SCALE FACTOR YS- ,E8.2,20H IN I)

906 FORMAT(24HONO. OF CELLS IM = ,14,17H
1 24HOTOT. TIME INTERVALS KM- ,14,17H
2 24H0NO. COLS. PRINTED IPR- ,14,

907 FORMAT(14,F8.4)
908 FORMAT(IH,2X,'TTME',5X,'PULSE ,24X,'MOMENT PROPAGATION-/)
911 FORMAT(1H1,2X,'TIME ,5X,'PULSE-,21X,-DEFECTION PROPAGATION-/)
1909 FORMAT(1HI,2X, TIME-,5X,-PULSE-,24X,-SHEAR PROPAGATION-/)
1910 FORMAT(HI,2X,-TIME-,5X,-PULSE ,16X,-LINEAR VELOCITY PROPAGATION-

1/)
1912 FORMAT(lHI,2X,-TIME-,5X,-PULSE",15X,-ANGULAR VELOCITY PROPAGATION

I,/)
4913 FORMAT(IHI,2X,(TIME-,5X,-PULSE-,23X, ROTATION PROPAGATION'/)
9266 FORMAT(IHS,X,(I-,3X,-X(T)-,/)
500 REWIND 21

DO 127 K-1,KM
READ (21) TT,MM(l),VV(1),(YY(I),I-1,IMO)
XB(K)-TT
YB(K)-YY(1)
YBI(K)-YY(4)
YB (K)-YY (7)

127 CONTINUE

CALL INITQ(A,B,C,D,600)
CALL STSWQ(4662,30)
READ(5,800) (LABEL(J,I),J-1,40)
READ(5,800) (LABEL(J,2),J=1,40)

C SET GRPHIT ARGUMENT VALUES.
N-KM
LOGX-O
LOGY-O
XAXIS-8.0
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YAXIS-5 -0
XMIN~dO.O
NXDEC-5
XI NC20. 0
YMIN=-1O . 0
NYDEC-5
YINC-4. 0
XSMIN-0. 0
XSMAX-100.0
YSMIN--1 0.0
YSMAX-1 0. 0
NDE CX-1
NDECY-1
HT-O.- 15
HTS-0. 15
ICON-)
CALL PL0TIT(YB,N,LOGX,LOGY,XAXIS,YAXIS,XMIN,XINC,NXDEC,
1 YMIN,YINCI.NYDEC,IABEL,XSMIN,XSMAX,YSMIN,YSMAX,XB,SYM4A,ICON,HT,
I NI.ECX,NDECY,HTS)
DO 130 I-1,N

130 YB(I)-YB1(I)
ICONO0
CALL SAMEP(YB, N,XB, SYMB, ICON)
DO 71 I-1,N

71 YB(I)-YB2(I)
ICONOw
CALL SAMEP(YB,N,XB,SYMC,ICONq)
CALL EPLOT
REWIND 12
DO 128 K-1,IKf
READ (12) TT,MM(1),VV(l) ,(VV(I),I-1 ,IMO)
XB(K)-TT
YB(K)-VV (1)
YB I ()-VV (4)
YB2(K).qV (7)

128 CONTINUE
CALL INITQ(A,B,C,D,600)
CALL STSWQ(4 662,31)
READ(5,800) (LABEL(J,1),J-1,40)
READ(5,800) (LABEL(J,2),J-l,40)

C SET ORPHIT ARGUMENT VALUES.
N-KM
LOGX-O
LOGY-0
XAXIS-8.0
YAXIS-5.0
XMIN-00
NXDEC-5
XINC-20.0
YMIN--10. 0
NYDEC-5
YINC-4.0
XSMIN-0.O
XSMAX-100. 0
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YSMIN--1O. 0
YSMAX- 10. 0
NDECX-1
NDECY-1
HT-O. 15
PIS-(). 15
ICON=O
CALL PLOTIT(YB,N,LOGX,LOGY,XAXIS,YAXIS,XMIN,XINC,NXDEC,

I YMIN,YINC, NYDEC, LABEL, XSMIN,XSMAX, YSMIN,YSMAX, XB, SYMA, ICON, HT,
1 NDECX,NDECY,HTS)
DO 72 1-1,N

72 YB(I)-YBI(I)
ICON-0
CALL SAMEP(YB, N,XB,SYMB, ICON)
DO 73 1-1,N

73 YB(l)-YB2(I)
IC ON-O
CALL SAMEP(YB, N,XB, SYMC, ICON)
CALL EPLOT
REWIND 11
DO 129 K-1,KM
READ (11.) TT,MM(l) ,VVCI) ,(MM(I) ,I-. * MG)
XB(K)-TT
YB(K)=MM(l)
YBI(K)-MM(4)
YB2(K)-MM(7)

129 CONTINUE
CALL INITQ(A,B,C,D,600)
CALL STSWQ(4662,32)
READ(5,8OO) (IABEL(J,1),J-1,40)
READ(5,800) (LABELCJ,2),J-1,40)

C SET ORPHIT ARGUMENT VALUES.
N-KM
LOGX-O
LOCY-0
XAXIS-8 .0
YAXIS-5.0
XcMIN-O. 0
NXDEC-5
XINC-20.0
YMIN--lO.0
NYDEC-5
YINC-4.0
XSKIN-O. 0
XSMAX100.0
YSMIN-lO. 0
YSMAX-lO.0
NDECX-1
NDECYl1
HT-0. 15
HTS-0. 15
ICON-)
CALL PLOTIT(YB,N,LOGX,LDGY,XAXIS,YAXIS,XMIN,XINC,NXDEC,
1 YMIN,YINC,NYDEC,LABEL,XSMIN,XSMAX,YSMIN,YSMAX,XBSYMA,ICON,HT,
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1 NDECX,NDECY,HTS)
Do 74 1-1,N

74 YB(E)-YBI(I)
ICON-0
CALL SAMEP(YB, N, XB,SYMB, ICON)
DO 75 I-1,N

75 YB(I)-YB2(I)
ICON-0
CALL SAMEP(YB ,NXE, SYMC, ICON)
CALL EPLOT
REWIND 21
DO 131 K-l,IcM
READ (21) TT,MM(1),V'V(1) ,(YY(I) ,I-1,IMO)
IF(K.N.KKM.AND.K.NE.cXMI.AND.K. NE.KKM2) GO TO 131
DO 231 I11,IMO
XB(I)-X(I)
IF(K.EQ.IKcM) YB(I)-YY(I)
IF(K.EQ.KKM1) YB1(I)-YY(I)
IF(K.EQ.KKM2) YB2(I)-YY(I)

231 CONTINUE
131 CONTINUE

CALL INITQ(A,B,C,D,600)
CALL STSWQ(4662 ,33)
READ(5,800) (LABEL(J,1) ,J-1 ,40)
READ(5,800) (LABEL(J,2),J-1,40)

C SET GRPHIT ARGUMENT VALUES.
N-IMO
LOGX-O
LOGY-()
XAXIS-8 .0
YAXIS-5.0
XMIN-O.0
NXDEC-5
XINC-0.2*DS
ThIN--O. 0
NYDEC-5
YINC-4.0
XSMIN-n.o
XSMAX-DS
YSMIN--l0. 0
YSHAX-1O. 0
NDFCX-1
NDECY-1
IT-O. 15
HTS0. 15

CALL PLOTIT(YB,N,LOGX,LOCY,XAXIS,YAXIS,XMIN,XINC,NXDEC,
1 YMIN,YINC,NYDEC,LABEL,XSMIN,XSMAX,YSMIN,YSMAX,XB,SYMA,ICON,HT,
1 NDECX,NDECY,HTS)
DO 76 1-1,Nr

76 YB(I)-Thl(1)
ICON-0
CALL SAMEP(YB, N, XB,SYMB,ICON)
DO 77 1-1,N
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77 YB(I)'.YB2(l)

ICONko
CALL SAMEP(YB,N,XB,SYMC, ICON)
CALL EPLOT
REWIND 12
DO 132 K-1,KM
READ (12) TT,MM(1),VV(1) ,(VV(I),I-l,INO)
IF(K.N.K04.AND.K.NE.KC41.AND.K. NE.KKM2) GO TO 132
DO 232 I-1,IMO
XB(I)-X(I)

IF(K.EQ.KKM1) YB()-VV(I)

IF(1C.EQ.KKM2) YB2(I)-VV(I)
232 CONTINUE
132 CONTINUE

CALL INITQ(A,B,C,D,600)
CALL STSWQ(4 662,34)
READ(5,800) (LABEL(J,),J-1,40)
READ(5,800) (LABEL(J,2),J'sl,40)

C SET GRPHIT ARGMENT VALUES.
N-'IMO
LOGX-O
T-OGY-0
XAXIS=8 .0
YAXIS-5.0
XMIN-0.O
NXDEC-5
XI NC0. 2*DS
YKIN-tO. 0
NYDEC-5
YINC-4.0
XSMIN-O. a
XSMAX-DS
YSMIN--10.0
YSMAX-10. 0
NDECX-1
NDECY- 1
HT-(). 1.5
HTS-O. 15
ICON-O
CALL PLOTIT(YB,N,LOGX,LOGY,XAXIS,YAXIS,XMIN,XINC,NXDEC,
I. YMIN,YINC,NYDEC,LABEL,XSMIN,XSMAXYSMIN,YSMAX,XB,SYMA,ICON,HT,
1 NDECX,NDECY,HTS)
DO 78 1-1,N

78 YB(I)-YBL(I)
ICON-0
CALL SAMEP(YB, N,XB,SYMB, ICON)
DO 79 1-n1,N

79 YB(I)-YB2(I)
ICON.')
CALL SAI EP (YB, N, XB, SYMC,ICON)
CALL EPLOT
REWIND 11
DO 133 K-l,KM
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READ (11) TT,MM(l) ,VV(1) ,(MM(I),I-l ,IMO)
IF(K.NE.KKM.AND.K.NE.KKM1.AND.K.NE.KKM2) GO TO 133
DO 233 I-1,IMO
XB(I)-X(I)
IF(K.EQ.KKM) YB(I)-MM(I)
IF(K.EQ.KKMI) YBI(I)-MMCI)
IF(K.EQ.KKM2) YB2(l)-MM(I)

233 CONTINUE
133 CONTINUE

CALL INITQ(A,B,C,D,600)
CALL STSWQ(4662,35)
READ(5,800) (LABEL(J,1),J-1,40)
READ(5,800) (LABEL(J,2) ,J-1 ,40)

C SET CRPHIT ARGUMENT VALUES.
N-IMO
LOGX-O
LOGY-0
XAXIS-8 .0
YAXIS-5.0
XMIN-O. 0
NXDEC-5
XINC-O. 2*DS
YMIN--1O. 0
NYDEC-5
YINC-4 .0
XSMIN-O .0
XSMAX-DS
YSMIN-1O. 0
YSMAX-10. 0
NDECX-1
NDECY-l
HT-0.15
HTS -0.15
ICON-0
CALL PLOTIT(YB,NWOX,tDnGY,XAXIS,YAXIS,XMIN,XINC,NXDEC,
1 YMIN,YINC,NYDEC,LABEL,XSMIN,XSMAX,YSMIN,YSMAX,XB,SYMA,ICON,HT,
1 NDECX,NDECY,HTS)

DO 81 1-1,N
81 YB(t)-YB1(I)

ICON-0
CALL SAMEP(YB ,N, XB, SYM,ICON)
DO 82 1-1,N

82 YB(I)-YB2(I)
ICON-0
CALL SAMEP(YB, N,XB,SYMC, ICON)
CALL EPLOT
YE(1)-0).O
YB1(1 )-O.O
YB2(l )-O.0
REWIND 21
DO 136 K-1,!G
READ (21) TTeM(1),VV(1),(YY(I),I-1,IMO)
IF(I.NE.XXM.AND.K.NE..KXM1.AND.K. NE.K1042) GO TO 136
DO 236 I-1,IM
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XB( I)-X (I)
IF(K.EQ.KKM4) YB(1+1)-(YY(I+1)-YY(l))/DX
IF(K.EQ.KKMI) YBI(I+1)a(YY(I+1)-YY(I))/DX
IF(K.EQ.1UcM2) YB2(1+1)=(YY(I+1)-YY(T))/DX

236 CONTINUE
136 CONTINUE

CALL INITQ(A,B,C,D,600)
CALL STSWQ(4 662,36)
READ(5,800) (LABEL(J,1) ,J-1,40)
READ(5,800) (LABEL(J,2),J-1,40)

C SET WRHIT ARGUMENT VALUES.
N IN 0
LOGX-O
LOGY-0
XAXIS-8.0
YAXIS-5 .0
XMIN-..
NXDEC-5
XINC--0. 2*DS
YMIN--l .0
NYDEC-5
YINC-0. 4
XSMIN-0.0
XSMAX-DS
YSMIN--1 .0
YSMAX-1.0
NDECX-1
NDECY-1
HT-0. 15
HTS-O. 15
IC ON-O
CALL PLOTIT(YB,N,LOGX,LOGY,XAXIS,YAXIS,XMIN,XINC,NXDEC,
I YMIN,YINC,NYDEC,LABEL,XSMIN,XSMAX,YSMIN,YSMAX,XB,SYMA,ICON,HT,
1 NDECX,NDECY,HTS)
DO 84 I-1,N

84 YB(I)-YBI(I)
ICON-(.
CALL SAMEP(YB, N,XB, SYME, ICON)
DO 95 1-1,N

85 YB(I)-YB2(I)
ICON-O
CALL SAMEP(YB,N,XB,SYMC,ICON)
CALL EPLOT

501 STOP
END

SUBROUTINE BEAM
DIMENSIONX(400) ,V (400) ,VEL(400) ,Y(400) ,PSI(400) ,OMEGA(400) ,VV(400)
I ,VELVE(400) ,OMOM(400) ,YY(400) ,PSIPS(400) ,AIM(400) ,AIV (400) ,Q(400)
REALINB,INT,L,MOM(400),MO,MS,MM(40n),NU,KS,MASS,INE.RT,LIV(400),LIQ
1(400)
LOGICAL*IIDENTC8O) ,FMT(80) ,NME(IO)
COMMONT,X,G,EM,L,MOM, I,Cl,C2,Q,VEL,Y,RHO,DEN,PSI,OMEGA,INB,INI,AIN
1, AS, KS,MO,V0, T1. T3,DT,DX, TS,MS,VS,VELS,OMGS, TT,VV,MM,VELVE, OMM, IM
1,KM,IPR,MASS,INERT,KKM,PSIPS,PSIS,YS,IMO,TAUITAU2,QQO,ESR,BETA

WLI

w. ;
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1 ,10M1,KKM2

PRINT 921
C INITIAL STATE Of BODY

DO 119 1-1,IMO
AIM(I)-0O
AIV(I)-O0
LIV (1)-O.O
LIQ(I)=O.O
LIQQ(I)-O.0
MOMMI-O.O
OMEGA(I)-O.O
PSI(I)-O.O
V(I)-O.O
VEL(I)-O.O0

119 YCI)0O.O
QQ'QQO
DTD-DX/( Cl)
DTR-DX/ (C2)

TD-O *

TL-O .0
TLB-O.O
TR-O. 0
DO 101 K-1,1K4
TT-T/ TS

C ***INPUT AT X-0, MOMRENT BOUNDARY CONDITION***
IF(T-Tl) 110,111,111

110 MOM(Imo)-MO
GO TO 1492

ill MOM(INO)wO.O
1492 CONTINUE

C **INPUT AT X-0, SHEAR BOUNDARY CONDITION***
IF(T-T3) 113,114,114

113 V (I)-VO
GO TO 115

114 V(l)-0.O
115 CONTINUE

C ***REACTION OF ELASTIC FOUNDATION***
DO 116 I-1,IM

116 CONTINUE
C SCALING FOR PRINTOUT

IZZ-IMO
DO 103 I-1,IZZ
t41(I)-H01(I)/MS
OWM(I )-OMEGA( I)/OMGS
PSIPS(I)-PSI(I )IPSIS
VELVE(I)-VEL(I)/VELS

YY(I )"Y(I )/YS
103 CONTINUE

WRITE (12) TT,MH(l),VV(l),(VV(I),I-l,IMO)
WRITE (13) TT,MM(1 ),VV (1) ,(PSIPS(I) ,1-l,IMO)



WRIT (2) TTMM~),VVI),VELV~l)I-1,MO)81
WRITE (20) TT,MM1) ,VV(l),(VFIV(I) ,I- ,MO)

WRITE (22) TT,MM(l),VV(l) ,(OMOM(I) ,I-1,IMO)
12 IF(ABS(TD-(T+DT))-.lE-1O) 19,19,89
89 IF(TD-TR) 15,15,16
16 IF(TD+DTD-TR-DTR) 15,15,13

C PROPAGATION PROCEDURE
C THE CI WAVE

15 DO 108 I-2,IMO
C ANGULAR IMPULSE DUE TO MOMENT

C ANGULAR IMPULSE DUE TO SHEAR
AIV(I)=CJCI-1)IV())*DX*(TD+DTD-TL)/2.O+AIV(I)

C CUMULATE LINEAR IMPULSE DUE TO THIS SHEAR
LIV (1-1 )=LIV (I-I )+(V (1)-V (1-l))*(TD+DTD-TL)

C DAMPING, FIRST HALF
IF(TAUI1.OE+40) 930,928,928

930 DOMGi(.O)*OMEA(I)*(DTfl/TAUl)
OMEGA(I )=OMEGA(I )+(DOMG*O. 5)

C IMPULSE-MOMENTUM ACROSS Cl
928 DOM-(AIM(I)+AIV(I))/INERT

OMEGA(I )-OMEGA(I )+DOM
C BOUNDARY CONDITION FOR OMEGA

OMEGA(l)-O.O
PSI(1.)=O.O

C DAMPING, SECOND HALF
IF(TAU1-1.OE+4O) 9113,815,815

9113 DOMG=(-1.O)*OMEGA(I)*(DTD/TAUfl)
OMEGA(I)=OMEGA(I)+CDOMC*0. 5)

C INITIALIZE ANGULAR IMPULSES AFTER USE
815 AIV (1)0.O0

AIM(I)-O.O
108 CONTINUE

TD-TD+DTD
TLB-TL
TL-TD
DO 107 I=1,IM
DALPH'.((OMEGA(I+l )-OMEGACI))*DTD)/DX

C CONSTITUTIVE EQUATION FOR INCREMENTAL MOMENT
DMOM-(-l 0)*EM*INB*DALPH

C CUMULATE MOMENT
MOM( I )MOM( I)+DMOM

C CUMULATE SHEAR (ENTIRE OMEGA PORTION)
V (1+1 ).-(1+1 )-AS*G*OMECA(I+1 )*DTh

C ROTATION
PSI(1+1 )-PSI(I+1 )+(OMECA(I+1 )*DTh)

107 CONTINUE
GO TO 12

C THE C2 WAVE
13 DO 104 I-1,IM

C LINEAR IMPULSE DUE TO FOUNDATION REACTION
LIQ(I )-Q(I )*DX*DTR+LIQ(I)

C LINEAR IMPULSE DUE TO SHEAR
LTV (I)-(V (1+1)-V (I))*(TR+DTR-TL)+LIV (1)
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C CUMULATING ANGULAR IMPULSE DUE TO SAME SHEAR
AIV (I+1 )=AIV (I+1 )+O.5*("i (I)4V (1+1) )*DX*(TR+DTR-TL)

C DAMPING, FIRST HALF
IF(TAU2-1.OE+40) 925,931,931

925 DVELG-(-l .O)*VELCI)*(DTR/TAU2)
VEL(I)-VEL(I)4(DVELG*O. 5)

C IMPULSE-MOMENTUM ACROSS C2
931 DVEL-(LIVI)+LIQ(I))/MASS

VELCI )-VELCI )+DVEL
C BOUNDARY CONDITION FOR VELOCITY

VEL(IM+l )mO.O
C DAMPING, SECOND HALF

IF(TAU2-1.OEI40) 927,818,818
927 DVELG-(-l .O)*VEL(I)*CDTR/TAU2)

VEL(I )-VEL(I )+(DVELG*O. 5)
C INITIALIZING LINEAR IMPULSES AFTER USE

818 LIV(I)=O.O
LIQ(I)=O.O

104 CONTINUE
TR-TR+DTR
TLB-TL
TL-TR
DO 102 I-1,IM

C LINEAR STRAIN
DSTRN-((VEL(I+1 )-VEL(l))*DTR)/DX

C CONSTITUTIVE EQUATION FOR INCREMENTAL SHEAR (VELOCITY PORTION)
DV-AS*G*DSTRN

C CUMULATE SHEAR
V (1+1 )-V (1+1 )+DJ

C DEFLECTION
Y(l)-Y(I)+CVELCI)*DTR)

102 CONTINUE
GO TO 12

19 CONTINUE
T-T+DT

101 CONTINUE
ENDFILE 11
ENDFILE 12
ENDFILE 13
ENDFILE 20
ENDFILE 21
ENDFILE 22

921 FORMAT(lHl)
500 RETURN

END
//DATA.FT11FOOl DD UNIT-SYSDA,SPACE-(TRK,(20,10),RLSE)
//DATA.FT12FOO1 DD UNIT-SYSDA,SPACE-(TRK,C20,1O),RLSE)
//DATA.FT13FOOl DD UNTTu-SYSDA,SPACE-(TRK,(2O,10) ,RISE)
/IDATA.FT2OFOOl DD UNIT-SYSDA,SPACE-(TRK,(20,10) ,RLSE)
//DATA.FT21FOOl DD UNIT-SYSDA,SPACE-(TRK,(20,10) ,RLSE)
//DATA.FT22FOOl DD UNIT-SYSDA,SPACE-(TRK,(20, 10) ,RLSE)
//DATA.INPUT DD
BOLEY CHECK
CIHS,F6.2,lX,F5. 1,IX,F5.1,IX,22F5.2)
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CONCRETE 0.0868 30.OOE+5 48.00 0.20 1.00 4.0E+O
0.833

0.OOE+O -100.OE+O 3.OOE+O 3.OOE+O 1.OOE-4 12.00E+() l.00E-?
1.50E-4

900 22 5.33E+O 50.OOE4O 1.OOE-5 1.OOE-2 3.O0E-5
3.00E-5

1.OOE+4 50 100 150 50.00
TIME IN 1.0*E-4 SEC
BEAM DEFLECTION IN 1.5*E-4 INCHES
TIME IN 1.0*E-~4 SEC
BEAM SHEAR IN 12.0*LB.
TIME IN 1.0*E-4 SEC
BEAM MOMENT IN 5O.0*LB-IN.
DISTANCE X IN INCHES
BEAM DEFLECTION IN 1.5*E-4 INCHES
DISTANCE X IN INCHES
BEAM SHEAR IN 12.0*LB
DISTANCE X IN INCHES
BEAM MOMENT IN 50.O*LB-IN.
DISTANCE X IN INCHES
BEAM SLOPE IN 1.5*E-4
//DATA.FT30FOOl DD DSN-MEN.P1850.A3B.PLOT,

// VOL=REF-MEN.P185.A3B.LIB,DISP-(NEW,KEEP),
// SPACE(TRK,(20,2),RLSE),
If DCB-(RECFM-FB, LRECL80,BLKSIZE=12960)

//DATA.FT31FOOl DD DSN-MEN.P11850.A3B.PLOT1,
II VOL=.REF-MEN.P11850.A3B.LIB,DISP-(NEW,KEEP),
// SPACE=(TRK,(20,2),RLSE),
// DCB=(RECFM-FB, LRECL=8O, BLKSIZE=1 2960)

//DATA.FT32FOOl DD DSN-MEN.Pl1850.A3B.PLOT2,
II VOL=REF=MEN.P11850.A3B.LIB,DISP-(NEW,KEEP),
II SPACE-(TRK,(20,2),RLSE),
II DCB-s(RECFM-FB, LRECL-80, BLKSIZE=12960)

//DATA.FT33FOO. DD DSN-MEN.P11850.A3B.PLOT3,
// VOL-REF=MEN.P11850.A3B.LIB,DISP-(NEW,KEEP),
If SPACE-(TRK,(20,2),RLSE),
/ I DCB-(RECFM-FB, LRECL=80, BLKS IZE-l 2960)

//DATA.FT34FOOl DD DSN-MEN.PIl1R5O.A3B.PLOT4,
// VOL=REF-MEN.P11850.A3B.LIB,DISP-(NFW,KEEP),
// SPACE-(TRK,(20,2),RLSE),
// DCB-(RECFM-FB, LRECL=80, 1LKSI"'E-12960)

//DATA.FT35FOOl DD DSN-MEN.Pl1850.A3B.PL0T5,
II VOL-REF-MEN.P1.1850.A3B.LIB,DISP-(NFW,KEEP),
// SPACE-(TRK,(20,2),RLSE),
II DCB-(RECFM-FB, LRECL-80, BLKSIZE-12960)

//DATA.FT36FOOI DD DSN-MEN.Pl1850.A3B.PLOT6,
If VOL-REF-MEN.P11850.A3B.LIB,DISP-(NEW,KEEP),
II SPACE-(TRK,(20,2),RLSE),
II DCB-(RECFM-FB,LRECL-8O, BLKSIZEI1296O)
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APPENDIX B

Computer Program for Infinite Plate

on Elastic Foundation
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// EXEC PGM=IEFBR14
//D DD DSN-MEN.PI1850.A3B.PLOT,DISP=(OLD,DELETE),
// VOL=REF-MEN. P11850. A3B. LIB
//D DD DSN-MEN.P11850.A3B.PLOT1.DISP-(OLD,DELETE),
/ / 'O L=REF-MEN.P11850.A3B. LIB
//D DD DSN-MEN.P11850.A3B.PLOT2,DISP-(OLD,DELETE),
// VOL-REF-MEN.P11850.A3B.LIB
//D DD DSN-MEN.Pl1850.A3B.PLOT3,DISP=(OLD,DELETE),
// VOL=REF-MEN. P11850.A3B. LIB
//D DD DSN-MEN.PI1850.A3B.PLOT4,DISP-(OLD,DELETE),
/ / VOL-REF-MEN. PI1850.A3B. LIB
//D DD DSN-MEN.P11850.A3B.PLOT5,DISP-(OLD,DELETE),
// V OL-REF-MEN.P11850.A3B.LIB
//D DD DSN-MEN.PII50.A3B.PLOT6,DISP-(OLD,DELETE),

/ V OL-REF-MEN. P11850. A3B. LIB
// EXEC FGCLG,PARM--NOSOURCE"
//SYSIN DD *

C CIRCULAR PLATE ON ELASTIC FOUNDATION

C SHEAR AND FLEXURAL WAVES BASED ON DYNAMIC LAWS
C UNITS IN LB-IN-SEC SYSTEM
C
C AIMR ANGULAR IMPULSE DUE TO RADIAL MOMENT LB-IN-SEC.
C AIMTE - ANGULAR IMPULSE DUE TO TANGENTIAL MOMENT LB-IN-SEC.
C AIQR ANGULAR IMPULSE DUE TO TRANSVERSE SHEAR LB-IN-SEC.
C ALPHA - ANGULAR STRAIN - D(PHI)/DR RAD/IN.
C CP - PLATE VELOCITY IN/SEC.
C C2 - SHEAR WAVE VELOCITY IN/SEC.
C D - FLEXXURAL RIGIDITY LB-IN.
C DALPH - INCREMENTAL ANGULAR STRAIN RAD/IN.
C DEN - WEIGHT DENSITY OF THE PLATE MATERIAL LB/CU IN.
C DR - CELL LENGTH IN.
C DSTRN - INCREMENTAL LINEAR STRAIN
C DS - DISTANCE SCALE FACTOR IN.

C DT - TIME INCREMENT SEC.
C DTD - TIME INCREMENT-DILATATIONAL WAVE SEC.
C DTR - TIME INCREMENT-SHEAR WAVE SEC.
C EM YOUNG'S MODULUS OF ELASTICITY PSI.
C ESR - FOUNDATION SPRING CONSTANT PSI.
C FMT - PRINT FORMAT FOR X-T DIAGRAMS
C G - SHEAR MODULUS OF RIGIDITY PSI.
C H - THICKNESS OF THE PLATE IN.
C IDENT - TITLE OF RUN
C IM - NO. OF CELLS INTO WHICH PLATE IS DIVIDED
C IPP - 0 PLOT THE DATA
C IPP - 1 PRINT THE DATA
C IPP - 2 PRINT AND PLOT THE DATA
C IPR - NO. OF COLUMNS OF PRINTOUT IN A PAGE
C KKM - TIME CONTROL INDEX FOR THE FIRST RESPONSE-DIST. CURVE
C KKMI - TIME CONTROL INDEX FOR THE SECOND RESPONSE-DIST. CURVE
C K'M2 - TIME CONTROL INDEX FOR THE THIRD RESPONSF-DIST. CURVE
C 1M - TIME CONTROL INDEX FOR TERMINATING COMPUTATION
C K2 - SHEAR CORRECTION FACTOR
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C LIQR - LINEAR IMPULSE DUE TO TRANSVERSE SHEAR LB-SEC.
C MMR - SCALED VALUE OF RADIAL MOMENT
C MMRO SCALED VALUE OF R-RO RADIAL MOMENT INPUT IN-LB.
C MMTH - SCALED VALUE OF TANGENTIAL MOMENT IN-LB.
C MR RADIAL BENDING MOMENT PER UNIT LENGTH LB-IN/IN.
C MRS - RADIAL MOMENT SCALE FACTOR UB-IN/IN.
C MRO - GIVEN APPLIED RADIAL MOMENT AT R-0 IN-LB.
C MTH - TANGENTIAL BENDING MOMENT PER UNIT LENGTH 1U-IN/IN.
C MTHS - TANGENTIAL MOMENT SCALE FACTOR LB-IN/IN.
C NAME - NAME OF MATERIAL OF BODY
C NU - POISSON'S RATIO
C OMEGA - VELOCITY OF ROTATION OF CROSS-SECTION,
C D(PSI)/DT - CLOCKWISE RAD/SEC.
C OMGS = ANGULAR VELOCITY SCALE FACTOR RAD/SEC.
C OMOM - SCALED VALUE OF ANGULAR VELOCITY
C PHI - ROTATION OF THE CROSS-SECTION ABOUT THE
C TANGENTIAL AXIS RAD.
C QQ - SCALED VALUE OF SHEAR
C QQO - SCALED VALUE OF R-RO SHEAR INPUT
C QR - TRANSVERSE SHEAR PER UNIT LENGTH LB/IN.
C QRS - SHEAR SCALE FACTOR
C QRO - GIVEN APPLIED TRANSVERSE SHEAR AT R=RO LB/IN.
C R - RADIAL COORDINATE FROM THE CENTER OF PL IN.
C RHO - MASS DENSITY OF PLATE MATERIAL LE-SEC**2/IN**4
C RL - OUTER RADIUS OF THE PLATE IN.
C RO - INNER RADIUS OF THE PLATE IN.
C STRAIN - LINEAR STRAIN - 0(W)/DR
C T -TIME SEC.
C TAUl - DAMPING TIME CONSTANT FOR OMEGA SEC.
C TAU2 - DAMPING TIME CONSTANT FOR VELOCITY SEC.
C TD - TIMW CLOCK WHICH REGULATES DILATATIONAL WAVE SEC.
C TL - THE PREVIOUS TD OR TR SEC.
C TR - TIME CLOCK WHICH REGULATES SHEAR WAVE SEC.
C TS - TIME SCALE FACTOR SEC.
C TT - SCALED VALUE OF TIME
C Ti - DURATION OF MOMENT PULSE AT R-O SEC.
C T3 - DURATION OF VELOCITY PULSE AT R-0 SEC.
C VEL VELOCITY OF DEFLECTION, D(W)/DT - DOWNWARD IN/SEC.
C VELS - LINEAR VELOCITY SCALE FACTOR IN/SEC.
C VELVE - SCALED VALUE OF LINEAR VELOCITY

W - TRANSVERSE DISP. OF THE MIDPLANE IN.
C WS - DEFLECTION SCALE FACTOR
C WW - SCALED VALUE OF DEFLECTION
C Z - K2*C2 IN/SEC.

REAL YB(900),XB(900) ,YBI(900),YB2(900)
LOGICAL*l SYMA/../,SYMB/","/,SYMC/'.'/
REAL*4 D(6,600)
INTEGER*2 A(600),B(600),C(600)
LOGICAL*l LABEL(40,2)

C MAIN PROGRAM
DIMENSION R(250) ,QR(250),VEL(250) ,W(250) ,OMEGA(250) ,QQ(250),
IVEIE (2 50) ,OMOM(2 50), WW( 2 50), U(2 50), QQs (2 50)
REAL MR(250),MTH(250),NU,MRO,MRS,MTHS,MMR(250), MtTH(250),
1MMRO,K2

ZRI
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LOGICAL*1 IDENT(80) ,FT(8n) ,NAMF.(lo)
COMMON T,R,G,EM,IMO,H,DI,RO,RL,MR,MTH,QR,CPC2,K2,VEL,W,RHO,
IDEN,N!J,OMEGA,MRO,QRO,T1 ,T3,DSTRN,DALPH,DT,DR,TS,MRS,
2MTHS,QRS,VELS,0MGS,WS, Tr,QQ,MMRMMTH,VELVE,OMOM, IM, 104, IPR,
3WW,MMRO,QQO,QQS,Z,U,TAU,TAU2,ESR,NAMF,FMT,IDENT

READ 901 ,IDENT,FMT
READ 902,NAME,DEN,EM,RO,RL,NU,DR,H
READ 80344R0,QRO,Tl,T3,TAUI,TAU2
READ 803,TS,QRS,VELS,WS,MRS,MTHS,OMGS
READ 804,KM,IPR,KCM,IUCML,KKH2
READ 805,ESR,DSIPP

800 FORMAT(B0A1)
801 FORMAT(SOAI /80A1)
802 FORMAT(l0A1,FlO.6,EIO.2,3FI0.2,FlO.3,ElO.2)
803 FORMAT(7E10.4)
804 FORMAT(5I10)
805 FORMATC2EIO.2,II0)

GEE-386.0
G-EM/(2.O*(l .0+NU))
DIl.(EM*H**3))/C12.)*(l .0-(NU**2)))
RHO-DEN/GEE
CP-(EM/(RHO*(1 .0-(NU**2))))**0. 5
C2-(G/RHO)**0.5
K2-((0.76+(0.3*NU))**0.5)
Z-K2 *C2
DT-DR/CP

C DISCRETATION OF PLATE INTO ELEMENTS
R(1 )-RO
DO 101 1-1,250
R(l+1 )-R(I)+DR
IF(ABS(R(l+1)-RL)-DR/2.0) 10,10,10t

10 IM-l
GO TO 11

101 CONTINUE
11 IMOUIM+1

PRINT 900,IDENT
900 FORMAT(ID,80A,//)

PRINT 901,NAME,DEN,RHO,EMG,NIU,Dt
PRINT 902,RO,RLH
PRINT 903,CP,C2,K2,Z
PRINT 904,MRO,QRO,Tl,T3
PRINT 905,DT,DR,TS,QRS,VES,4GS,MRS,MTHS,WS
PRINT 906,IM,KK,IPR
PRINT 9266

9266 FORMAT(IHS,2X,.3X,-R(I),/)
PRINT 907,(I,R(I),I-,IMO)
MMRO-MRO /MRS
QQO-QRO /QRS
REWIND 11
REWIND 12
REWIND 13
REWIND 20
REWIND 21
REWIND 22
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CALL PLATE
IF(IPP.EQ.1) GO TO 500

C PRINT INSTRUCTIONS
IA-1
1M2-I PR,

30 REWIND 11
REWIND 12
REWIND 13
REWIND 20
REWIND 21
REWIND 22
IF(IM+1-1M2) 24,24,25

24 IM2-IM+1
C R-T DIAGRAM FOR RADIAL MEMENT

25 PRINT 908
DO 104 K-1,IOM
READ(l1) TT,MMRO,QQO,(MKR(I),I-1,IMO)
PRINT FMT,TTMMRO,QQO,(MMR(I),I-TA,IM2)

104 CONTINUE
C R-T DIAGRAM FOR TANGENTIAL MOMENT

PRINT 4913
DO 4108 K-1,Q4
READ(13) TT,MMRO,QQO,CMMTH(I),I-1,IMO)
PRINT FMT,TT,MMRO,QQO,(MMTH(I) ,I-IA,1M2)

4108 CONTINUE
C R-T DIAGRAM FOR SHEAR

PRINT 1909
DO 105 K-I ,IG
READ(12) TT,MMRO,QQO,(QQ(I),1-1,IMO)
PRINT FMT,TT,MMRO,QQO,(QQ(I),I-IA,1M2)

105 CONTINUE
C R-T DIAGRAM FOR LINEAR VELOCITY

PRINT 1910
DO 106 K-1,KM
READ(20) TT,MMRO,QQO,(VEVE(),I-l,IMO)
PRINT FMT,Tr,MMRO,QQO,(VETYE(I),I-IA,IM2)

106 CONTINUE
C R-T DIAGRAM FOR DEFLECTION

PRINT 911
DO 107 K-1,KM

PRINT FMT,TT,NNRO,QQO,(WW(I),I-IA,1M2)
107 CONTINUE

C R-T DIAGRAM FOR ANGULAR VELOCITY
PRINT 1912
DO 108 K-1,KM
READ(22) TT,MMRO,QQO,(OMO(),I-l,IMO)
PRINT FMT,TT,MKRO,QQO,(0140K(I),I-IA,1M2)

108 CONTINUE
IF( IM-1M2) 9872 ,9872,37

37 IA-IA+IPR
1M2-1M2+IPR
GO TO 30

9872 PRINT 913
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901 FORMAT(26HOMATERIAL - 10A1 /
1 26H WEIGHT DENSITY DEN - F8.3,16H LBS/IN**3 /
2 26H MASS DENSITY RHO - F8.6,16H LB/IPS**2/IN**4 /
3 26H YOUNGS MODULUS E - E8.2,16H PSI /
4 26H MOD. OF RIGIDITY G - E8.2,16H PSI /
5 26H POISSONS RATIO NU - F8.2,16H I
6 26H FLEXURAL RIGIDITY D - ,E8.2,16H LB-IN /)

902 FORMAT(26HOINNER RADIUS RO - ,F8.4,16H IN /
I 26HOOUTER RADIUS RL ,F8.4,16H IN /
2 26HOPLATE THICKNESS H - ,F8.4,16H IN I)

903 FORMAT(26HOPLATE VELOCITY CP - ,F10.2,16H IN/SEC /
1 26H SHEAR VELOCITY C2 ,FIO.2,16H IN/SEC /
2 26H SHEAR WAVE COR. K2 ,F8.6,15H IN**2 /
3 26H WAVE OF SHEAR DISC. Z - ,FIO.2,17H IN/SEC (Z=K2*C2)/)

904 FORMAT(24HOR-O MOMENT PULSE MRO- ,F8.0,16H IN-LB /
1 24H R-O SHEAR PULSE QRO- ,F8.0,16H LB /
4 24H MRO PULSE DURATION Tl- ,E12.5,14H SEC /
6 24H QRO PULSE DURATION T3- ,E12.5,14H SEC /)

905 FORMAT(26HOTIME INCREMENT DT - ,E8.2,16H SEC /
1 26H CELL LENGTH DR -,F8.5,16H IN /
2 26H TIME SCALE FACTOR TS - ,E8.2,16H SEC /
3 26H SHEAR SCALE FACTOR QRS -,E8.2,16H LB /
4 26H VEL SCALE FACTOR VELS ,E8.2,16H IN/SEC /
5 26H ANG VEL SCALE FAC OMGS - ,E8.2,16H RAD/SEC /
6 26H MOM. SCALE FACTOR MRS - ,E8.2,16H LB /
7 26H MOM. SCALE FACTOR MTHS - ,E8.2,16H LB /
3 26H DEF SCALE FACTOR WS - ,E8.2,16H IN /)

906 FORMAT(26HONO. OF CELLS IM - ,14,15H /
1 26 TOT. TIME INTERVALS KM - ,14,15H /
2 26H NO. COLS. PRINTED IPR - ,14, /I/)

907 FORMAT(14,F8.4)
908 FORMAT(46HITIME PULSE RADIAL MOMENT PROPAGATION /)
1909 FORMAT(46HITIME PULSE SHEAR PROPAGATION
1910 FORMAT(46HITIME PULSE LINEAR VELOCITY PROPAGATION /)
911 FORHAT(46HITIME PULSE DEFLECTION PROPAGATION I)
1912 FORMAT(46HITIME PULSE ANGULAR VELOCITY PROPAGATION /)
913 FORMAT(IHI)
4913 FORMAT(46HITIME PULSE TANGENTIAL MOMENT PROPAGATION /)
500 REWIND 21

DO 127 K-I,KM
READ (21) TT,MMRO,QQO,(WW(I),I-1,IMO)
XB(K)-TT
YB(K)-WW(1)
YB1(K)-WW(II)
YB2 (K)-WW(21)

127 CONTINUE
CALL INITQ(A,B,C,D,600)
CALL STSWQ(4662,30)
READ(5,800) (LABEL(J,I),J-l1,40)
READ(5,800) (LABEL(J,2),J-1,40)

C SET PLOTIT ARGUMENT VALUES.
N-KM
LOGX-0
LOGY-O

1.-I



XAXIS-8 .0 
9

YAXS-5 .0
XMIN-O. 0
NXDEC-5
XI NC-2O. 0
YMI N--l 0. 0
VYDEC-5
YINC-4.0
XSMIN-0 .0
XSMAX-1 00.0
YSMIN--10. 0
YSMAX-10. 0
NDECX-l
NDECY-l
RT-0. 15
HTS -0. 15
ICON--()
CALL PLOTIT(YB,N,LOGX,LOGY,xAXISYAXIS,XMIN,XINC,NXDEC,
I YMIN,YIC,NYDEC,LABEL,XSMIN,XSMAX,YSMIN,YSMAX,XB,SYMA,ICON,HT,
I NDECX, NDECY,HTS)
DO 130 1-1,N

130 YB(I)-YBI(I)
ICON-0
CALL SAMEP(YD, N, XB,SYMB, ICON)
DO 71 Tl,N

71 YB(I)-YB2(I)
ICON-)
CALL SAMEP(YB,N,XB,SYMC, ICON)
CALL EPLOT
REWIND 12
DO 128 K-1,KM
READ (12) TT,MMRO,QQO,(QQ(),l-l,IMO)
XB(K)-TT
YB(K)-QQ(1)
Th1(x)-QQ(l1)
YB2(YK)-QQ(21)

128 CONTINUE
CALL INITQ(A,BgC,D,600)
CALL STSWQ(4662,31)
READ(5,800) (L&EL(J,),J-1,40)
READ(5,800) (LABEL(J,2),J-1,40)

C SET PLOTIT ARGUMENT VALUES.
N-KM
t.OX-O
LOGY -0
XAXIS-8 .0
YAXIS-5.0
XMIlN-0.0
NXDEC-5
XINC-20.O
YMIN'-l0.0
NYDE C-5
YINC-4.0
XSMIN-O.O
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XSMAX-OO. 0
YSMIN--10. 0
YSMAX-1 0. 0
NDECX-1
,NDECY-1
HT-O. 15
HTS-O. 15
ICON-O
CALL PLOTIT(YB, N, LOGX, IDGY,XAXIS ,YAXIS, XMIN,XINC , NXEC,
I YMIN,YIC,NYDEC,LABEL,XSMIN,XSMAX,YSMIN,YSMAX,X,SYMA,ICON,HT,
I NDECX,NDECY,HTS)
00 72 I-1,N

72 YB(I)-YBI(I)
ICON-O
CALL SAMEP(YB, N, XB, SYMB, ICON)
DO 73 1-1,N1

73 YB(I)-YB2(I)
ICON-0
CALL SAMEP(YB, N, XR,SYMC, ICON)
CALL EPLOT
REWIND 1.1
DO 129 K.1,M
READ (11) TT,MMRO,QQO,(MMRCI),I-1,IMO)
XB(K)-TT
YE(K)-MMR(1)
YB1OC )-MMR( 11)
YB2(K)-KMR(21)

129 CONTINUE
CALL INITQ(AB,C,D,600)
CALL STSWQ(4662 ,32)
READ(5,800) (LABEL(J,1),J-l,40)
READ(5,8OO) (tABEL(J,2),J-1,40)

C SET PLOTIT ARGUMENT VALUES.
N-Km
LOGX-O
LOGY-O
XAXIS-9 .0
YAXIS-'5.0
XMIN-O -0
NXDEC-5
XINC-20.O
YMIN--1O. 0
NYDFC-5
YINC-4.0
XSMIN-0.0
XSMAX-100. 0
YSMIN--10. 0
YSMAX-10. 0
NDFCX-1
NDECY-1
HT-O. 15
HTS-O. 15
ICON-O
CALL PLOTIT(YB,N,LOCX,LOGY,XAXIS,YAXIS,XMIN,XINC,NXDEC,
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1 YMI1N,YINC,NYDEC,LABEL,XSMIN,XSMAX,YSMIN,YSMAX,XB,SYM'A,ICON,HT,
1 NDECX,NDECY,HTS)
DO 74 1-1,N

74 YB(I)-YBL(I)
ICON-O
CALL SAMEP(YBN, XB, SYME,ICON)
DO 75 I-1,N

75 YE(I)-YB2(E)
ICON-)
CALL SAIIEP(YB, N,XB, SYhC, ICON)
CALL EPLOT
REWIND 21
DO 131 K-l,ICM
READ (21) TT,MMRO,QQO,(WW(I),I-1IMO)
IF(K.NE.KKM.AND.K.NE.KMI.AND.K.N.OM2) GO TO 131
DO 231 1-1,IM0
XB(t)-R(I)
IFCK.EQ.KKM) YB(I)-WW(I)
IF(K.EQ.IKMKI) YBI(I)-WW(I)
IF(K.EQ.ICKM2) YB2(I)-WW(I)

231 CONTINUE
131 CONTINUE

CALL INITQ(A,B,C,D,600)
CALL STSWQ(4662 ,33)
READ(5,800) (tABEL(J,l),J-1,40)
READ(5,800) (LABEL(J,2),J-l,40)

C SET PLOTIT ARGUMENT VALUES.
N-Imo
LOGX-O
LOGY-0
XAXIS-8 .0
YAXIS-5.O
Xa4INinO.
NXDEC-5
XINC-0.2*DS
YMIN-10. 0
NYDEC-5
YI NC-4 .0
XSMIN-O.O0
XSMAX-DS
YSMIN--10. 0
YSY4AX-lO.0
NDECX-1
NDECY-1
HTO * 15
HTS-0. 15
ICON-()
CALL PLOTIT(YB,N,tOGX,LOGY,XAXIS,YAXIS,X41N,XINC,NXDEC,

I YMIN,YNC.NYDEC,AEL,XSMIN,XSMAX,YSMIN,YSMAX,XB,SYhA,ICON,HT,
1 NDECX,NQ!CY,HTS)

DO 76 1-1,N
76 YI()-YI(I)

ICON-0
CALL SAIIEP(YB, N,XB,SYh3,ICON)
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Do 77 1-1, N
77 YB(l)-YB2(I)

TCONO0
CALL SAMEP(YB, &,XB,SYMC, ICON)
CALL EPLOT
REW4IND 12
DO 132 K-1,YM
READ (12) TT,MMRO,QQO,CQQ(I),I'4,IMO)
TF(K.NE.KKM.AND.K. W.KKMI.AND.K.NE.KKM2) GO TO 132
DO 232 I-1,IMO
XB(I)-R(I)
IF(K.EQ.KKM) YB(I)-QQCI)
IF(K.EQ.KKM1) YB1(I)-QQ(I)
IF(K.EQ.KKM2) YB2(I)-QQ(I)

232 CONTINUE
132 CONTINUE

CALL INITQ(A,B,C,D,600)
CALL STSWQ(4662 ,3/.)
READ(5,800) (LABEL(J,1),J-1,40)
READ(5,800) (LABEL(J,2),Jn1,40)

C SET PLOTIT ARGUMENT VALUES.
N-TMO
LOGX-O
LOGYO0
XAXIS-8 .0
YAXIS5. 0
XMIN-0.0
NXDEC-5
XINC0. 2*DS
YMINin-O. 0
NYDEC-5
YINC-4.0
XSMIN-0 .0
XSMAX'DS
YSMIN-10. 0
YSMAX-O. 0
NDECX-1
NDECY-1
HT-O. 15
HTS'.O.15
ICONO0
CALL PLOTIT(YB,N,LOGX,LOGY,XAXIS,YAXIS,XMI1N,XINC,NXDEC,
1 YMIN,YINC,NYDEC,LABEL,XSMIN,XSMAX,YSMIN,YSMAX,XB,SYA,ICON,NT,
I NDECX,NDECY,HTS)
DO 78 1-1,N

78 YB(I)inYBIl)
ICONO0
CALL SAMEP(YB,N,XB,SYMB, ICON)
0O 79 I-1,N

79 Y3(I)-YB2(I)
ICONO0
CALL SAMEP(YB, N, XB.SYhC,ICON)
CALL EPLOT
REWIND 11



94

DO 133 IC-1,104
READ (11) Tr,M,.R,QQ,(M4MR(I),I.1,IMn)
IF(K.NE.KKM.AND.K.NE.KKM1.AND.K.NE.KKN2) GO TO 133
DI) 233 I-l,IMO
XB(t)-R(l)
IF(K.EQ.KKM) YB(I)-MMR(I)
IF(K.EQ.KKGU) YBl(I)-MMR(l)
IF(K.EQ.KKK2) YB2(I)-MMR(I)

233 CONTINUE
133 CONTINUE

CALL INITQ(A,BC,D.600)
CALL STSWQ(4662, 35)
READ(5,800) (LABEL(J,1),J-1,40)
READ(5 ,800) CIABEL(J, 2) ,J-l ,40)

C SET PLOTIT ARGUMENT VALUES.
N-IMO
LOGX-o
LOGY-0
XAXIS-8.0
YAXIS-5 .0
XIN-0.O
NXDEC-5
XINC-O. 2*DS
YMIN-1O. 0
NYDEC-5
YINC-4 .0
XSMINO0.O
XSgMAX-DS
YSMINin-10. 0
YSMAX'4 0.0
NDECXl
NDECYl1
HT-O. 15
IITS-0.15
ICON-O
CALL PL.OTIT(YB,N,LOGX,LOGY,XAXIS,YAXIS,XMIN,XINC,NXDEC,

1 YMIN,YINaC,NYDEC,LABEL,XSMIN,XSMAX,YSMIN,YSMAX,XB,SYhA,IC0N,HT,
1 NDECX, NDECY,HTS)

DO 81 1-1,N
81 YB(I)inYB(I)

ICON-O
CALL SAMEP(Th, N, XB, SYMB,ICON)
DO 82 I-1,N

82 YB(I)-YB2(I)
ICONO0
CALL SAMEP(YB, N, XB,SYMC,ICON)
CALL EPLOT
YB(1)-O.O
YB1(1)-O.O
YB2(l)-O.0
REWIND 21
DO 136 K-1,KM
READ (21) TT,?ORO,QQO,(W(),I-1,MO)
IFKW.K.N..EKM-N..EI2 GO TO 136
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DO 236 I-1,IM

IF(K.EQ.KKM) YB(TI)-(WW(I+1)-WW(I))/DR
IF(K.EQ.KKMI) yBJ1+l )-(1WW(I44)-WWCI))/DR
IF(K.EQ.KKM2) YB2(I+l)..(WW(I+1)-WW(T))IDR

236 CONTINUE
136 CONTINUE

CALL INITQ(A,B,C,D,600)
CALL STSWQ(4 662,36)
READ(5,800) (LABEL(J,l),J-1,40)
READ(5,800) (LABEL(J,2),J-1,40)

C SET PLOTIT ARGUMENT VALUES.
N=IMO
LOGX=O
LOGY-10
XAXIS-8 .0

YAXIS.5.0
XM~IN-0. 0
NXDEC-5
XINC-0.2*DS
ThINin-10.
NYDECUS
YINC4.0
XSMINWO.0
XSMAX-DS
YSMIN--l0. 0
YSMAX-1 0.0
NDECX-1
NDFCY-1
HT-O. 15
HTS0. 15
ICON-O
CALL PLOTIT(YB,N,tDGX,LOGY,XAXS,YAXIS,XQ4IN,XINC,NXDEC,
I. YhIN,YINC,NYDEC,tABEL,XSMIN,XSMAX,YSMIN,YSMAX,XB,SYMA,ICON,HT,
I NDECX,NDECY,HTS)
DO 84 I-l,N

84 YB(I)-YBLIl)
ICON-0
CALL SAMEP(YB, N,XB,SYMB,ICON)
DO 85 1-1,N

85 YB(I)-YB2(I)

CALL SA14EP(YB, N, XB,SYMC,ICON)
CALL EPLOT
STOP
END
SUBROUTINE PLATE
DIMENSION R(250),QR(250),VEL(250),W(250),OMEGA(250),QQ(250),

1VELVIE(250) ,O4cR(25O) ,WW(250) ,AIMR(250) ,AIM4TH(250) ,U(250) ,AIQR(250)
1 ,QQS(250)

REAL MR(250),MTH(250),NU,MRO,MRS,MTHS,MMR(250),MWM(250),
1MMRO,K2, LIQR(250)

L.OGICAL*. IDENT(SO) ,FMT(S0) ,NAME(lO)
COMMON T,R,G,Df, IMO,H,DI ,RO,RL,MR,MTH,QR,CP,C2,1C2,VEL,W,RHO,

A &VV
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I DEN, NU, OMEGA, MRO, QRO, T1,T3,DSTRN,DALPH,DT, DR, TS, MRS,
2MTHS,QRS,VELS,OMCS,WS,TQQ,,MR,MH,VELVFOMMIMKIPR
3WW,MMRO,QQO,QQS,Z,U,TAU1,TAU2,ESR,NAME,FMT,IDENT
PRINT 921

921 FORMAT(IH1)
C INITAL STATE OF PLATE

DO 119 I-1,IMO
AIMR(I )mO .0
AIMTH (1)-O.O0
AIQR(I)-0
LIQR(I)mO.O
MR(l)-0.O
MTH(I)=O.0
QR(I )-O. 0

WE(I)-O.

OMECA(I)-O.O0
U(I)=oO

119 CONTINUE
DTD-DR/CP
DTR-DR/Z
T-0. 0
TD-0 .0
TL-O.O
TLB-O.O
TR-O. 0
DO 101 K-I ,!G
TT-T/TS

C ***INPT AT R=R0, MOMENT BOUNNDARY CONDITION***
IF(T-T1) 110,111,111 110 MR(IMO)-MRO
GO TO 1492 111 MR(IMO)-O.0

1492 CONTINUE
C ***INPUT AT R-RO, SHEAR BOUNDARY CONDITION***

IF(T-T3) 113,114,114
113 QRCI)-QRO/2*3.1415*R(l))

GO TO 115
114 QR(l)-O.00
115 CONTINUE

C ***FOUNDATION REACTION***
DO 116 1-1,IMO
QQS(I )inESR*W(I)

116 CONTINUE
C SCALING FOR PRINTOUT

IZZ-IMO
DO 103 I-l,IZZ
MMR(I)-MR(I)/MRS
MMTH(I)-MTH(I )/MTHS

VELVEC)-VEL(I)NVELS
OMOM(I)-OMEGA(I )/OMGS
WW(I)-W(T)/WS

103 CONTINUE
WRITE(11)TT,MIIRO,QQO,(MMR(l) ,I-l, IMO)
WRITE(12)TT,MMRO,QQO,(QQ(I),I-1 ,IMO)

- r~....T
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WRITE(13)TT,MMRO,QQO,(MMTH(l) ,I- , IMO)

WRITE(21)TT,MNRO,O00,(WW11(I.-1 ,tMO)
W4RIE(2.2)TT,MMRO,QQO,(OMOM(I),Iul ,IMO)

12 IF(ABS(TD-(T+DT))-O.-(n) 19,1q.99
89 IF(TD-TR) 15,15,16
16 IF(TD+DTD-TR-DTR) 15,15,13

C THE CP WAVE
15 DO 108 I-2,IMO

AIMTH(I )-AIMTH(I )+MTH(I-1 )*DR*DTD

I *Q(Ttl4DT-TL)

I )*(TD4y)T.-T)
IF(TAU1-l.OE+4O) 930,928,928

930 DOMG-(-1. 0)*OMEGA( I)*CDTD/TAU1)
OMEGA(I )-OMEGA(I )+(DOMG/2 .0)

C IMPULSE AND MOMENTUM ACROSS CP.
928 B=((RHO*H)/24.0)*((H**2 ))*((2 .0*R(l)*DR)+(DR**2-)))

DOM-(AIMRCI)-AIMTHCI )-AIQR(I))/B
OMEGACI )-OMEGA(I )+DOM
OMEGA(l)n0.0
IF(TAUI-1.OE+40) 9113,815,815

C DAMPING, SECOND HALF
9113 DOMGinC-1.0)*OMEGA(I)*(DTD/TAUl)

OMEGA(lI)-OMEGA( I)+(DOMG/2 .0)
C INITIALIZE ANGULAR IMPULSE AFTER USE
815 AIMR(I)0.0O

AIMTH(I)'.O -0
AIQR(I)-0. 0

108 CONTINUE
TD-TD+DTD
TLB-TL
TL-TD
DO 107 I-1,IM

C ANGULAR STRAIN
DALPH-( (OMEGAC 1+1)-OMEGA(I) )*DTD) IDR

C CONSTITUTIVn EQUATIONS FOR M(X4MENT
IF(I.EQ. 1) DMRWDI*(DALPH)
IF(I.NwE.1) DMRwDI*(DALPH+((NU)*U(I-1)))
DMTH-DI*CU(I)+( (';)*DALPHj))
MR(I )-MR(I )+DMR
IF(I.EQ.1) MTH(I)-MTH(I)+DMTH
IF(I.NE.1) MTH(I-1)-MTH(I-1)+DMTH
U(I)-COMEGA(I)*DTD)/R(I)
QR(I+1)-QR(I+l )+(K2**2 )*G*H*OMEGA( 1+1 )*DTD

107 CONTINUE
GO TO 12

13 DO 104 1-1,IM
LIQR(I)inLlQR(I)+(QR(I+l)*CR(I)+DR)-QR(I)*R(l))*(TR+DTR-TL)+

1(O.5*(Q4QS(1+l )+Q95(I))*(R(I)+DR/2.0)*DR)*DTR
AIQR(I+1),AIQR(1+1)+(QRCI+1)*(R(I)+DR)*DR+QR(I)*R(I)*DR)*O.5*(TR+

lDTR-TL)
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IF(TAU2-1.O'E+4O) 925,931,931
C DAMPING, FIRST HALF
925 DVELC-(-l.O)*lEL(I)*(DTR/TAU2)

VELI )-V EL(I )-4(DVELG/2. 0)
C IMPULSE AND MOMENTUM ACROSS K2*C2
931 Ai(R(I)*DR)+( (0. 5)*DR*DR)

1DJEE..LIQR(I )/(RHO*H*A)
VEL(T)-JEL(I)+DJEE
V EL(IM+. )-0. 0
IF(TAU2-1.OE+40) 927,818,818

C DAMPING, SECOND HALF
927 DVELC-(-1.O)*VEL(I)*(DTR/TAU2)

VELCI )- ELCI )+(DVELG/2 .0)
818 LIQR()0O.0
104 CONTINUE

TR-TR$DTR
TLB-TL
TL-TR
DO 102 I-1,IM
DSTRN-( (V EL(I+l )-V EL(I) )*DTR) /DR
DQR-(K2**2 )*G*H*CDSTRN)
QR(I+l )-QR(I+1 )+DQR
t(I)-W(I )+(IEL(I )*DTR)

102 CONTINUE
GO TO 12

19 CONTINUE
T-T+DT

101 CONTINUE
ENDFILE 11
ENDFILE 12
ENDFILE 13
ENDFILE 20
ENDFILE 21
ENDFILE 22

500 RETURN
END

//DATA.FT1lFOOl DD UNIT=SYSDA,SPACE-(TRK,(5,5),RLSE)
//DATA.FT12FOOl DD UNIT=SYSDA, SPACE-(TRK, (5,5) ,RLSE)
I/DATA. FT13FOOI DD UNIT-SYSDA, SPACE-(TRK, (5,5) ,RLSE)
/ /DATA. FT2OFOOI DD UNIT-SYSDA, SPACE-(TRC, (5,5) ,RLSE)
//DATA.FT2lFOOl DD UNIT-SYSDA, SPACE-(TRK, (5,5) ,RLSE)
//DATA.FT22FOOl DD UNIT-SYSDA,SPACE-(TRK,(5,5) ,RLSE)
//DATA.INPUT DD *
CONDITION I FOR PLATE ON ELASTIC FOUNDATION
(IHS,F6.2,1X,F5.1,lX,F5.1,LX,22FS.2)
CONCRETE 0.0868 30.OOE+5 0.20 15.00 0.20 0.20

4.00
O.000E40O -100.OE+O 4.0000E43 4.OOOOE+O 3.OOOOE-5 3.OOOOE-5
l.OOOOE-5 1O.OOOE+O 4.OOOOE-1 5.OOOOE-6 5.00E4O 1.0000E40 5.OO00E40

10O 22 100 100 50
1.20E+5 15.OOE+O I

TIME IN l.O*E-5 SEC
PLATE DEFLECTION IN 5*E-6 INCHES
TIME IN t.O*E-5 SEC
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PLATE SHEAR IN 1O.*LB.
TIME IN 1.O*E-5 SEC
PLATE MOMENT 1N 5.*LB-T.N.
DISTANCE X IN INCHES
PLATE DEFLECTION IN 5*r-6 INCHES
DISTANCE X IN INCHES
PLATE SHEAR IN IO.*LB
DISTANCE X IN INCHES
PLATE MOMENT IN 5.*LB-T.N.
DISTANCE X IN INCHES
PLATE SLOPE IN 5*E-6
//DATA.FT3OFOOl DD DSN-MEN.PII850.A3B.PLOT,

1/ VOL-REF-MEN.Plg5.A3B.LIB,DTSP-(NEFW,KEEP),
1/ SPACE-(TRK,(,2),RLSF),
// DCB-(RECFMFB,LRECLS,BLKSIZEaI2960)

//DATA.FT31FOOL DD DSN-MEN.Pl850-A3B.PLOTl,
// VOL-REF-.MEN.Pl1g50.A3B.LIB,DTSP-(NEW,K!L-EP),
II SPACE-(TRK,(l,2),RLSE),
/ / DCB-(RECFM-FB, LRECL-90, BLKSIZE-12960)

//DATA.FT32FOOl DD DSN-MEN.P1850.A3B.PLOT2,
// VOL-REF-MEN.PI1.850.A3B.LTB,DTSP-(NEW,KEEP),
1/ SPACE-(TRK,(1,2),RLSE),
/ / DCB=(RECFM-FB, LRECLWSO, BLKSIZE-l 2960)

//DATA.FT33FOOl DD1 DSN-MEN.P11850.A3B.PLOT3,
// VOL=REF-MEN.PllS50.A3B.LTR,DTSP-(NW,CEEP),
If SPACE-(TRK,(1,2),RLSE),
/ / DCE=(RECFM-FB, LRECL=80, BLKSIZE-1296n)

//DATA.FT34FOOl DD1 DSN-MEN.P11850.A3B.PLOT4,
// VOL=REF-MEN.Pll850.A3B.LTB,DTSP.(NEW,KEEP),
// SPACE-(TRK,(1,2),RLSE),
/ / DCB-(RECI'M-FB, LRECL=80, BLKSIZE-l 2960)

//DATA.FT35FOOl DD1 DSN-MEN.P19150.A3B.PLOT5,
// VOL-REF-MEN.P11850.A3B.LTB,DTSP.(NEW,KEEP),
// SPACE-(TRK,(1,2),RLSE),
/ / DCB-(RECFM-FB, LRECL-8O ,BLKSIZE=12960)

//DATA.FT36FOOl DD DSN-MEN.Pl1850.A3B.PLOT6,
II VOL=REF=MEN.Pl1950.A3B.LIB,DTSP-(NEW,KEEP),
II SPACE-(TRK,(1,2),RLSF),
1/ DCB-(RECFM-FB, LRECL=80,BLKSTZE-1 2960)

-*4r r- ,-
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